meos-2024/code/oEventDraw.cpp
2023-05-14 22:03:57 +02:00

2454 lines
75 KiB
C++

/************************************************************************
MeOS - Orienteering Software
Copyright (C) 2009-2023 Melin Software HB
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License fro more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Melin Software HB - software@melin.nu - www.melin.nu
Eksoppsvägen 16, SE-75646 UPPSALA, Sweden
************************************************************************/
#include "stdafx.h"
#include <vector>
#include <deque>
#include <set>
#include <cassert>
#include <algorithm>
#include <chrono>
#include <random>
#include "oEvent.h"
#include "gdioutput.h"
#include "oDataContainer.h"
#include "random.h"
#include "meos.h"
#include "meos_util.h"
#include "localizer.h"
#include "gdifonts.h"
#include "oEventDraw.h"
#include "meosexception.h"
int ClassInfo::sSortOrder=0;
DrawInfo::DrawInfo() {
changedVacancyInfo = true;
changedExtraInfo = true;
vacancyFactor = 0.05;
extraFactor = 0.1;
minVacancy = 1;
maxVacancy = 10;
baseInterval = timeConstMinute;
minClassInterval = 2*timeConstMinute;
maxClassInterval = 3*timeConstMinute;
nFields = 10;
firstStart = timeConstHour;
maxCommonControl = 3;
allowNeighbourSameCourse = true;
coursesTogether = false;
// Statistics output from optimize start order
numDistinctInit = -1;
numRunnerSameInitMax = -1;
minimalStartDepth = -1;
}
bool ClassInfo::operator <(ClassInfo &ci)
{
if (sSortOrder==0) {
return sortFactor > ci.sortFactor;
}
else if (sSortOrder == 2) {
return pc->getSortIndex() < ci.pc->getSortIndex();
}
else if (sSortOrder == 3) {
if (unique != ci.unique) {
if (ci.nRunnersGroup != nRunnersGroup)
return nRunnersGroup > ci.nRunnersGroup;
else
return unique < ci.unique;
}
else
return firstStart<ci.firstStart;
}
else
return firstStart<ci.firstStart;
}
struct ClassBlockInfo{
int FirstControl;
int nRunners;
int Depth;
int FirstStart;
bool operator<(ClassBlockInfo &ci);
};
bool ClassBlockInfo::operator <(ClassBlockInfo &ci)
{
return Depth<ci.Depth;
}
namespace {
void getLargestClub(map<int, vector<pRunner> > &clubRunner, vector<pRunner> &largest)
{
size_t maxClub = 0;
for (map<int, vector<pRunner> >::iterator it =
clubRunner.begin(); it != clubRunner.end(); ++it) {
maxClub = max(maxClub, it->second.size());
}
for (map<int, vector<pRunner> >::iterator it =
clubRunner.begin(); it != clubRunner.end(); ++it) {
if (it->second.size() == maxClub) {
swap(largest, it->second);
clubRunner.erase(it);
return;
}
}
}
void getRange(int size, vector<int> &p) {
p.resize(size);
for (size_t k = 0; k < p.size(); k++)
p[k] = k;
}
void drawSOFTMethod(vector<pRunner> &runners, bool handleBlanks) {
if (runners.empty())
return;
//Group runners per club
map<int, vector<pRunner> > clubRunner;
for (size_t k = 0; k < runners.size(); k++) {
int clubId = runners[k] ? runners[k]->getClubId() : -1;
clubRunner[clubId].push_back(runners[k]);
}
vector< vector<pRunner> > runnerGroups(1);
// Find largest club
getLargestClub(clubRunner, runnerGroups[0]);
int largeSize = runnerGroups[0].size();
int ngroups = (runners.size() + largeSize - 1) / largeSize;
runnerGroups.resize(ngroups);
while (!clubRunner.empty()) {
// Find the smallest available group
unsigned small = runners.size() + 1;
int cgroup = -1;
for (size_t k = 1; k < runnerGroups.size(); k++)
if (runnerGroups[k].size() < small) {
cgroup = k;
small = runnerGroups[k].size();
}
// Add the largest remaining group to the smallest.
vector<pRunner> largest;
getLargestClub(clubRunner, largest);
runnerGroups[cgroup].insert(runnerGroups[cgroup].end(), largest.begin(), largest.end());
}
unsigned maxGroup = runnerGroups[0].size();
//Permute the first group
vector<int> pg(maxGroup);
getRange(pg.size(), pg);
permute(pg);
vector<pRunner> pr(maxGroup);
for (unsigned k = 0; k < maxGroup; k++)
pr[k] = runnerGroups[0][pg[k]];
runnerGroups[0] = pr;
//Find the largest group
for (size_t k = 1; k < runnerGroups.size(); k++)
maxGroup = max<int>(maxGroup, runnerGroups[k].size());
if (handleBlanks) {
//Give all groups same size (fill with 0)
for (size_t k = 1; k < runnerGroups.size(); k++)
runnerGroups[k].resize(maxGroup);
}
// Apply algorithm recursivly to groups with several clubs
for (size_t k = 1; k < runnerGroups.size(); k++)
drawSOFTMethod(runnerGroups[k], true);
// Permute the order of groups
vector<int> p(runnerGroups.size());
getRange(p.size(), p);
permute(p);
// Write back result
int index = 0;
for (unsigned level = 0; level < maxGroup; level++) {
for (size_t k = 0; k < runnerGroups.size(); k++) {
int gi = p[k];
if (level < runnerGroups[gi].size() && (runnerGroups[gi][level] != 0 || !handleBlanks))
runners[index++] = runnerGroups[gi][level];
}
}
if (handleBlanks)
runners.resize(index);
}
void drawMeOSMethod(vector<pRunner> &runners) {
if (runners.empty())
return;
map<int, vector<pRunner>> runnersPerClub;
for (pRunner r : runners)
runnersPerClub[r->getClubId()].push_back(r);
vector<pair<int, int>> sizeClub;
for (auto &rc : runnersPerClub)
sizeClub.emplace_back(rc.second.size(), rc.first);
sort(sizeClub.rbegin(), sizeClub.rend());
int targetGroupSize = max<int>(runners.size()/20, sizeClub.front().first);
vector<vector<pRunner>> groups(1);
for (auto &sc : sizeClub) {
int currentSize = groups.back().size();
int newSize = currentSize + sc.first;
if (abs(currentSize - targetGroupSize) < abs(newSize - targetGroupSize)) {
groups.emplace_back();
}
groups.back().insert(groups.back().end(), runnersPerClub[sc.second].begin(),
runnersPerClub[sc.second].end());
}
size_t nRunnerTot = runners.size();
if (groups.front().size() > (nRunnerTot + 2) / 2 && groups.size() > 1) {
// We cannot distribute without clashes -> move some to other groups to prevent tail of same club
int toMove = groups.front().size() - (nRunnerTot + 2) / 2;
for (int i = 0; i < toMove; i++) {
int dest = 1 + i % (groups.size() - 1);
groups[dest].push_back(groups.front().back());
groups.front().pop_back();
}
}
// Permute groups
size_t maxGroupSize = 0;
vector<int> pv;
for (auto &group : groups) {
pv.clear();
for (size_t i = 0; i < group.size(); i++) {
pv.push_back(i);
}
permute(pv);
vector<pRunner> tg;
tg.reserve(group.size());
for (int i : pv)
tg.push_back(group[i]);
tg.swap(group);
maxGroupSize = max(maxGroupSize, group.size());
}
runners.clear();
size_t takeMaxGroupInterval;
if (groups.size() > 10)
takeMaxGroupInterval = groups.size() / 4;
else
takeMaxGroupInterval = max<int>(2u, groups.size() - 2);
deque<int> recentGroups;
int ix = 0;
if (maxGroupSize * 2 > nRunnerTot) {
takeMaxGroupInterval = 2;
ix = 1;
}
while (true) {
ix++;
pair<size_t, int> currentMaxGroup(0, -1);
int otherNonEmpty = -1;
size_t nonEmptyGroups = 0;
for (size_t gx = 0; gx < groups.size(); gx++) {
if (groups[gx].empty())
continue;
nonEmptyGroups++;
if (groups[gx].size() > currentMaxGroup.first) {
if (otherNonEmpty == -1 || groups[otherNonEmpty].size() < currentMaxGroup.first)
otherNonEmpty = currentMaxGroup.second;
currentMaxGroup.first = groups[gx].size();
currentMaxGroup.second = gx;
}
else {
if (otherNonEmpty == -1 || groups[otherNonEmpty].size() < groups[gx].size())
otherNonEmpty = gx;
}
}
if (currentMaxGroup.first == 0)
break; // Done
int groupToUse = currentMaxGroup.second;
if (ix != takeMaxGroupInterval) {
// Select some other group
for (size_t attempt = 0; attempt < groups.size() * 2; attempt++) {
int g = GetRandomNumber(groups.size());
if (!groups[g].empty() && count(recentGroups.begin(), recentGroups.end(), g) == 0) {
groupToUse = g;
break;
}
}
}
else {
ix = 0;
}
if (!recentGroups.empty()) { //Make sure to avoid duplicates of same group (if possible)
if (recentGroups.back() == groupToUse && otherNonEmpty != -1)
groupToUse = otherNonEmpty;
}
// Try to spread groups by ensuring that the same group is not used near itself
recentGroups.push_back(groupToUse);
if (recentGroups.size() > takeMaxGroupInterval || recentGroups.size() >= nonEmptyGroups)
recentGroups.pop_front();
runners.push_back(groups[groupToUse].back());
groups[groupToUse].pop_back();
}
}
bool isFree(const DrawInfo &di, vector< vector<pair<int, int> > > &StartField, int nFields,
int FirstPos, int PosInterval, ClassInfo &cInfo)
{
int Type = cInfo.unique;
int courseId = cInfo.courseId;
int nEntries = cInfo.nRunners;
bool disallowNeighbors = !di.allowNeighbourSameCourse;
// Adjust first pos to make room for extra (before first start)
if (cInfo.nExtra > 0) {
int newFirstPos = FirstPos - cInfo.nExtra * PosInterval;
while (newFirstPos < 0)
newFirstPos += PosInterval;
int extra = (FirstPos - newFirstPos) / PosInterval;
nEntries += extra;
FirstPos = newFirstPos;
}
//Check if free at all...
for (int k = 0; k < nEntries; k++) {
bool hasFree = false;
for (int f = 0; f < nFields; f++) {
size_t ix = FirstPos + k * PosInterval;
int t = StartField[f][ix].first;
if (disallowNeighbors) {
int prevT = -1, nextT = -1;
if (PosInterval > 1 && ix + 1 < StartField[f].size())
nextT = StartField[f][ix + 1].second;
if (PosInterval > 1 && ix > 0)
prevT = StartField[f][ix - 1].second;
if ((nextT > 0 && nextT == courseId) || (prevT > 0 && prevT == courseId))
return false;
}
if (t == 0)
hasFree = true;
else if (t == Type)
return false;//Type of course occupied. Cannot put it here;
}
if (!hasFree) return false;//No free start position.
}
return true;
}
bool insertStart(vector< vector< pair<int, int> > > &StartField, int nFields, ClassInfo &cInfo)
{
int Type = cInfo.unique;
int courseId = cInfo.courseId;
int nEntries = cInfo.nRunners;
int FirstPos = cInfo.firstStart;
int PosInterval = cInfo.interval;
// Adjust first pos to make room for extra (before first start)
if (cInfo.nExtra > 0) {
int newFirstPos = FirstPos - cInfo.nExtra * PosInterval;
while (newFirstPos < 0)
newFirstPos += PosInterval;
int extra = (FirstPos - newFirstPos) / PosInterval;
nEntries += extra;
FirstPos = newFirstPos;
}
for (int k = 0; k < nEntries; k++) {
bool HasFree = false;
for (int f = 0; f < nFields && !HasFree; f++) {
if (StartField[f][FirstPos + k * PosInterval].first == 0) {
StartField[f][FirstPos + k * PosInterval].first = Type;
StartField[f][FirstPos + k * PosInterval].second = courseId;
HasFree = true;
}
}
if (!HasFree)
return false; //No free start position. Fail.
}
return true;
}
}
class DrawOptimAlgo {
private:
oEvent * oe;
vector<pClass> Classes;
vector<pRunner> Runners;
int maxNRunner = 0;
int maxGroup = 0;
int maxCourse = 0;
int bestEndPos = 0;
map<int, ClassInfo> otherClasses;
int bestEndPosGlobal = 0;
static int optimalLayout(int interval, vector< pair<int, int> > &classes) {
sort(classes.begin(), classes.end());
vector<int> chaining(interval, 0);
for (int k = int(classes.size()) - 1; k >= 0; k--) {
int ix = 0;
// Find free position
for (int i = 1; i<interval; i++) {
if (chaining[i] < chaining[ix])
ix = i;
}
int nr = classes[k].first;
if (chaining[ix] > 0)
nr += classes[k].second;
chaining[ix] += 1 + interval * (nr - 1);
}
int last = chaining[0];
for (int i = 1; i<interval; i++) {
last = max(chaining[i], last);
}
return last;
}
void computeBestStartDepth(DrawInfo &di, vector<ClassInfo> &cInfo, int useNControls, int alteration) {
//OutputDebugString((L"Use NC:" + itow(useNControls)).c_str());
if (di.firstStart <= 0)
di.firstStart = 0;
otherClasses.clear();
cInfo.clear();
map<int, int> runnerPerGroup;
map<int, int> runnerPerCourse;
int nRunnersTot = 0;
for (auto c_it : Classes) {
bool drawClass = di.classes.count(c_it->getId()) > 0;
ClassInfo *cPtr = 0;
if (!drawClass) {
otherClasses[c_it->getId()] = ClassInfo(&*c_it);
cPtr = &otherClasses[c_it->getId()];
}
else
cPtr = &di.classes[c_it->getId()];
ClassInfo &ci = *cPtr;
pCourse pc = c_it->getCourse();
if (pc && useNControls < 1000) {
if (useNControls > 0 && pc->getNumControls() > 0)
ci.unique = 1000000 + pc->getIdSum(useNControls);
else
ci.unique = 10000 + pc->getId();
ci.courseId = pc->getId();
}
else
ci.unique = ci.classId;
if (!drawClass)
continue;
int nr = 0;
if (ci.startGroupId == 0)
nr = c_it->getNumRunners(true, true, true);
else {
vector<pRunner> cr;
oe->getRunners(c_it->getId(), 0, cr, false);
for (pRunner r : cr)
if (r->getStartGroup(true) == ci.startGroupId)
nr++;
}
if (ci.nVacant == -1 || !ci.nVacantSpecified || di.changedVacancyInfo) {
// Auto initialize
int nVacancies = int(nr * di.vacancyFactor + 0.5);
nVacancies = max(nVacancies, di.minVacancy);
nVacancies = min(nVacancies, di.maxVacancy);
nVacancies = max(nVacancies, 0);
if (di.vacancyFactor == 0)
nVacancies = 0;
ci.nVacant = nVacancies;
ci.nVacantSpecified = false;
}
if (!ci.nExtraSpecified || di.changedExtraInfo) {
// Auto initialize
ci.nExtra = max(int(nr * di.extraFactor + 0.5), 1);
if (di.extraFactor == 0)
ci.nExtra = 0;
ci.nExtraSpecified = false;
}
ci.nRunners = nr + ci.nVacant;
if (ci.nRunners > 0) {
nRunnersTot += ci.nRunners + ci.nExtra;
cInfo.push_back(ci);
runnerPerGroup[ci.unique] += ci.nRunners + ci.nExtra;
runnerPerCourse[ci.courseId] += ci.nRunners + ci.nExtra;
}
}
maxGroup = 0;
maxCourse = 0;
maxNRunner = 0;
int a = 1 + (alteration % 7);
int b = (alteration % 3);
int c = alteration % 5;
for (size_t k = 0; k < cInfo.size(); k++) {
maxNRunner = max(maxNRunner, cInfo[k].nRunners);
cInfo[k].nRunnersGroup = runnerPerGroup[cInfo[k].unique];
cInfo[k].nRunnersCourse = runnerPerCourse[cInfo[k].courseId];
maxGroup = max(maxGroup, cInfo[k].nRunnersGroup);
maxCourse = max(maxCourse, cInfo[k].nRunnersCourse);
cInfo[k].sortFactor = cInfo[k].nRunners * a + cInfo[k].nRunnersGroup * b + cInfo[k].nRunnersCourse * c;
}
/*for (size_t k = 0; k < cInfo.size(); k++) {
auto pc = oe->getClass(cInfo[k].classId);
auto c = pc->getCourse();
wstring cc;
for (int i = 0; i < 3; i++)
cc += itow(c->getControl(i)->getId()) + L",";
wstring w = pc->getName() + L"; " + cc + L"; " + itow(cInfo[k].unique) + L"; " + itow(cInfo[k].nRunners) + L"\n";
OutputDebugString(w.c_str());
}*/
di.numDistinctInit = runnerPerGroup.size();
di.numRunnerSameInitMax = maxGroup;
di.numRunnerSameCourseMax = maxCourse;
// Calculate the theoretical best end position to use.
bestEndPos = 0;
for (map<int, int>::iterator it = runnerPerGroup.begin(); it != runnerPerGroup.end(); ++it) {
vector< pair<int, int> > classes;
for (size_t k = 0; k < cInfo.size(); k++) {
if (cInfo[k].unique == it->first)
classes.push_back(make_pair(cInfo[k].nRunners, cInfo[k].nExtra));
}
int optTime = optimalLayout(di.minClassInterval / di.baseInterval, classes);
bestEndPos = max(optTime, bestEndPos);
}
if (nRunnersTot > 0)
bestEndPos = max(bestEndPos, nRunnersTot / di.nFields);
if (!di.allowNeighbourSameCourse)
bestEndPos = max(bestEndPos, maxCourse * 2 - 1);
else
bestEndPos = max(bestEndPos, maxCourse);
}
public:
DrawOptimAlgo(oEvent *oe) : oe(oe) {
oe->getClasses(Classes, false);
oe->getRunners(-1, -1, Runners);
}
void optimizeStartOrder(vector< vector<pair<int, int> > > &StartField, DrawInfo &di,
vector<ClassInfo> &cInfo, int useNControls, int alteration) {
if (bestEndPosGlobal == 0) {
bestEndPosGlobal = 100000;
for (int i = 1; i <= di.maxCommonControl && i<=10; i++) {
int ncc = i;
if (i >= 10)
ncc = 0;
computeBestStartDepth(di, cInfo, ncc, 0);
bestEndPosGlobal = min(bestEndPos, bestEndPosGlobal);
}
di.minimalStartDepth = bestEndPosGlobal * di.baseInterval;
}
computeBestStartDepth(di, cInfo, useNControls, alteration);
ClassInfo::sSortOrder = 0;
sort(cInfo.begin(), cInfo.end());
int maxSize = di.minClassInterval * maxNRunner;
// Special case for constant time start
if (di.baseInterval == 0) {
di.baseInterval = 1;
di.minClassInterval = 0;
}
int startGroup = 0;
// Calculate an estimated maximal class intervall
for (size_t k = 0; k < cInfo.size(); k++) {
if (cInfo[k].startGroupId != 0)
startGroup = cInfo[k].startGroupId; // Need to be constant
int quotient = maxSize / (cInfo[k].nRunners*di.baseInterval);
if (quotient*di.baseInterval > di.maxClassInterval)
quotient = di.maxClassInterval / di.baseInterval;
if (cInfo[k].nRunnersGroup >= maxGroup)
quotient = di.minClassInterval / di.baseInterval;
if (!cInfo[k].hasFixedTime)
cInfo[k].interval = quotient;
}
for (int m = 0; m < di.nFields; m++)
StartField[m].resize(3000);
int alternator = 0;
// Fill up with non-drawn classes
for (auto &it : Runners) {
if (it->isRemoved())
continue;
int st = it->getStartTime();
int relSt = st - di.firstStart;
int relPos = relSt / di.baseInterval;
if (st > 0 && relSt >= 0 && relPos < 3000 && (relSt%di.baseInterval) == 0) {
int cid = it->getClassId(true);
if (otherClasses.count(cid) == 0) {
if (startGroup == 0 || startGroup == it->getStartGroup(true))
continue;
}
pClass cls = it->getClassRef(true);
if (cls) {
if (!di.startName.empty() && cls->getStart() != di.startName)
continue;
if (cls->hasFreeStart())
continue;
}
int unique, courseId;
auto res = otherClasses.find(cid);
if (res != otherClasses.end()) {
unique = res->second.unique;
courseId = res->second.courseId;
}
else {
res = di.classes.find(cid);
if (res != di.classes.end()) {
unique = res->second.unique;
courseId = res->second.courseId;
}
else {
int unique = 12345678;
int courseId = it->getCourse(false) ? it->getCourse(false)->getId() : 0;
}
}
int k = 0;
while (true) {
if (k == StartField.size()) {
StartField.push_back(vector< pair<int, int> >());
StartField.back().resize(3000);
}
if (StartField[k][relPos].first == 0) {
StartField[k][relPos].first = unique;
StartField[k][relPos].second = courseId;
break;
}
k++;
}
}
}
// Fill up classes with fixed starttime
for (size_t k = 0; k < cInfo.size(); k++) {
if (cInfo[k].hasFixedTime) {
insertStart(StartField, di.nFields, cInfo[k]);
}
}
if (di.minClassInterval == 0) {
// Set fixed start time
for (size_t k = 0; k < cInfo.size(); k++) {
if (cInfo[k].hasFixedTime)
continue;
cInfo[k].firstStart = di.firstStart;
cInfo[k].interval = 0;
}
}
else {
// Do the distribution
for (size_t k = 0; k < cInfo.size(); k++) {
if (cInfo[k].hasFixedTime)
continue;
int minPos = 1000000;
int minEndPos = 1000000;
int minInterval = cInfo[k].interval;
int startV = di.minClassInterval / di.baseInterval;
int endV = cInfo[k].interval;
if (cInfo[k].fixedInterval != 0) {
endV = startV = cInfo[k].fixedInterval;
}
for (int i = startV; i <= endV; i++) {
int startpos = alternator % max(1, (bestEndPos - cInfo[k].nRunners * i) / 3);
startpos = 0;
int ipos = startpos;
int t = 0;
while (!isFree(di, StartField, di.nFields, ipos, i, cInfo[k])) {
t++;
// Algorithm to randomize start position
// First startpos -> bestEndTime, then 0 -> startpos, then remaining
if (t < (bestEndPos - startpos))
ipos = startpos + t;
else {
ipos = t - (bestEndPos - startpos);
if (ipos >= startpos)
ipos = t;
}
}
int endPos = ipos + i * cInfo[k].nRunners;
if (endPos < minEndPos || endPos < bestEndPos) {
minEndPos = endPos;
minPos = ipos;
minInterval = i;
}
}
cInfo[k].firstStart = minPos;
cInfo[k].interval = minInterval;
cInfo[k].overShoot = max(minEndPos - bestEndPosGlobal, 0);
insertStart(StartField, di.nFields, cInfo[k]);
alternator += alteration;
}
}
}
};
void oEvent::optimizeStartOrder(vector<pair<int, wstring>> &outLines, DrawInfo &di, vector<ClassInfo> &cInfo)
{
if (Classes.size()==0)
return;
struct StartParam {
int nControls;
int alternator;
double badness;
int last;
StartParam() : nControls(1), alternator(1), badness(1000), last(90000000) {}
};
StartParam opt;
bool found = false;
int nCtrl = 1;//max(1, di.maxCommonControl-2);
const int maxControlDiff = di.maxCommonControl < 1000 ? di.maxCommonControl : 10;
bool checkOnlyClass = di.maxCommonControl == 1000;
DrawOptimAlgo drawOptim(this);
while (!found) {
StartParam optInner;
for (int alt = 0; alt <= 20 && !found; alt++) {
vector< vector<pair<int, int> > > startField(di.nFields);
drawOptim.optimizeStartOrder(startField, di, cInfo, nCtrl, alt);
int overShoot = 0;
int overSum = 0;
int numOver = 0;
for (size_t k=0;k<cInfo.size();k++) {
const ClassInfo &ci = cInfo[k];
if (ci.overShoot>0) {
numOver++;
overShoot = max (overShoot, ci.overShoot);
overSum += ci.overShoot;
}
//laststart=max(laststart, ci.firstStart+ci.nRunners*ci.interval);
}
double avgShoot = double(overSum)/cInfo.size();
double badness = overShoot==0 ? 0 : overShoot / avgShoot;
if (badness<optInner.badness) {
optInner.badness = badness;
optInner.alternator = alt;
optInner.nControls = nCtrl;
//Find last starter
optInner.last = 0;
for (int k=0;k<di.nFields;k++) {
for (size_t j=0;j<startField[k].size(); j++)
if (startField[k][j].first)
optInner.last = max(optInner.last, int(j));
}
}
}
if (optInner.last < opt.last)
opt = optInner;
if (opt.badness < 2.0 && !checkOnlyClass) {
found = true;
}
if (!found) {
nCtrl++;
}
if (nCtrl == 4 && checkOnlyClass)
nCtrl = 1000;
if (nCtrl>maxControlDiff) //We need some limit
found = true;
}
vector< vector<pair<int, int> > > startField(di.nFields);
drawOptim.optimizeStartOrder(startField, di, cInfo, opt.nControls, opt.alternator);
outLines.emplace_back(0, L"Identifierar X unika inledningar på banorna.#" + itow(di.numDistinctInit));
outLines.emplace_back(0, L"Största gruppen med samma inledning har X platser.#" + itow(di.numRunnerSameInitMax));
outLines.emplace_back(0, L"Antal löpare på vanligaste banan X.#" + itow(di.numRunnerSameCourseMax));
outLines.emplace_back(0, L"Kortast teoretiska startdjup utan krockar är X minuter.#" + itow(di.minimalStartDepth/timeConstMinute));
outLines.emplace_back(0, L"");
//Find last starter
int last = opt.last;
int laststart=0;
for (size_t k=0;k<cInfo.size();k++) {
const ClassInfo &ci = cInfo[k];
laststart=max(laststart, ci.firstStart+(ci.nRunners-1)*ci.interval);
}
outLines.emplace_back(0, L"Faktiskt startdjup: X minuter.#" + itow(((last+1) * di.baseInterval)/timeConstMinute));
outLines.emplace_back(1, L"Sista start (nu tilldelad): X.#" +
oe->getAbsTime(laststart*di.baseInterval+di.firstStart));
outLines.emplace_back(0, L"");
int nr;
int T=0;
int sum=0;
outLines.emplace_back(1, L"Antal startande per intervall (inklusive redan lottade):");
string str="";
int empty=4;
while (T <= last) {
nr=0;
for(size_t k=0;k<startField.size();k++){
if (startField[k][T].first)
nr++;
}
T++;
sum+=nr;
if (nr!=0) empty=4;
else empty--;
char bf[20];
sprintf_s(bf, 20, "%d ", nr);
str+=bf;
}
outLines.emplace_back(10, L"#" + gdibase.widen(str));
outLines.emplace_back(0, L"");
}
void oEvent::loadDrawSettings(const set<int> &classes, DrawInfo &drawInfo, vector<ClassInfo> &cInfo) const {
drawInfo.firstStart = timeConstHour * 22;
drawInfo.minClassInterval = timeConstHour;
drawInfo.maxClassInterval = 1;
drawInfo.minVacancy = 10;
drawInfo.maxVacancy = 1;
drawInfo.changedExtraInfo = false;
drawInfo.changedVacancyInfo = false;
set<int> reducedStart;
for (set<int>::const_iterator it = classes.begin(); it != classes.end(); ++it) {
pClass pc = oe->getClass(*it);
if (pc) {
int fs = pc->getDrawFirstStart();
int iv = pc->getDrawInterval();
if (iv > 0 && fs > 0) {
drawInfo.firstStart = min(drawInfo.firstStart, fs);
drawInfo.minClassInterval = min(drawInfo.minClassInterval, iv);
drawInfo.maxClassInterval = max(drawInfo.maxClassInterval, iv);
drawInfo.minVacancy = min(drawInfo.minVacancy, pc->getDrawVacant());
drawInfo.maxVacancy = max(drawInfo.maxVacancy, pc->getDrawVacant());
reducedStart.insert(fs%iv);
}
}
}
drawInfo.baseInterval = drawInfo.minClassInterval;
int lastStart = -1;
for (set<int>::iterator it = reducedStart.begin(); it != reducedStart.end(); ++it) {
if (lastStart == -1)
lastStart = *it;
else {
drawInfo.baseInterval = min(drawInfo.baseInterval, *it-lastStart);
lastStart = *it;
}
}
map<int, int> runnerPerGroup;
map<int, int> runnerPerCourse;
cInfo.clear();
cInfo.resize(classes.size());
int i = 0;
for (set<int>::const_iterator it = classes.begin(); it != classes.end(); ++it) {
pClass pc = oe->getClass(*it);
if (pc) {
int fs = pc->getDrawFirstStart();
int iv = pc->getDrawInterval();
if (iv <= 0)
iv = drawInfo.minClassInterval;
if (fs <= 0)
fs = drawInfo.firstStart; //Fallback
cInfo[i].pc = pc;
cInfo[i].classId = *it;
cInfo[i].courseId = pc->getCourseId();
cInfo[i].firstStart = fs;
cInfo[i].unique = pc->getCourseId();
if (cInfo[i].unique == 0)
cInfo[i].unique = pc->getId() * 10000;
cInfo[i].firstStart = (fs - drawInfo.firstStart) / drawInfo.baseInterval;
cInfo[i].interval = iv / drawInfo.baseInterval;
cInfo[i].nVacant = pc->getDrawVacant();
cInfo[i].nExtra = pc->getDrawNumReserved();
auto spec = pc->getDrawSpecification();
cInfo[i].hasFixedTime = spec.count(oClass::DrawSpecified::FixedTime) != 0;
cInfo[i].nExtraSpecified = spec.count(oClass::DrawSpecified::Extra) != 0;
cInfo[i].nVacantSpecified = spec.count(oClass::DrawSpecified::Vacant) != 0;
cInfo[i].nRunners = pc->getNumRunners(true, true, true) + cInfo[i].nVacant;
if (cInfo[i].nRunners>0) {
runnerPerGroup[cInfo[i].unique] += cInfo[i].nRunners;
runnerPerCourse[cInfo[i].courseId] += cInfo[i].nRunners;
}
drawInfo.classes[*it] = cInfo[i];
i++;
}
}
for (size_t k = 0; k<cInfo.size(); k++) {
cInfo[k].nRunnersGroup = runnerPerGroup[cInfo[k].unique];
cInfo[k].nRunnersCourse = runnerPerCourse[cInfo[k].courseId];
}
}
void oEvent::drawRemaining(DrawMethod method, bool placeAfter)
{
DrawType drawType = placeAfter ? DrawType::RemainingAfter : DrawType::RemainingBefore;
for (oClassList::iterator it = Classes.begin(); it != Classes.end(); ++it) {
vector<ClassDrawSpecification> spec;
spec.emplace_back(it->getId(), 0, 0, 0, 0, VacantPosition::Mixed);
drawList(spec, method, 1, drawType);
}
}
struct GroupInfo {
int firstStart = 0;
int unassigned = 0;
int ix;
vector<int> rPerGroup;
vector<int> vacantPerGroup;
};
namespace {
bool sameFamily(pRunner a, pRunner b) {
wstring af = a->getFamilyName();
wstring bf = b->getFamilyName();
if (af.length() == bf.length())
return af == bf;
if (af.length() > bf.length())
swap(af, bf);
vector<wstring> bff;
split(bf, L" -", bff);
for (wstring &bfs : bff) {
if (bfs == af)
return true;
}
return false;
//return af.find(bf) != wstring::npos || bf.find(af) != wstring::npos;
}
template<typename RND>
void groupUnassignedRunners(vector<pRunner> &rIn,
vector<pair<vector<pRunner>, bool>> &rGroups,
int maxPerGroup, RND rnd) {
map<int, vector<pRunner>> families;
for (pRunner &r : rIn) {
int fam = r->getDCI().getInt("Family");
if (fam != 0) {
families[fam].push_back(r);
r = nullptr;
}
}
map<int, vector<pRunner>> clubs;
for (pRunner &r : rIn) {
if (r)
clubs[r->getClubId()].push_back(r);
}
// Merge families to clubs, if appropriate
for (auto &fam : families) {
int cid = fam.second[0]->getClubId();
if (cid != 0 && clubs.count(cid) && int(clubs[cid].size() + fam.second.size()) < maxPerGroup) {
clubs[cid].insert(clubs[cid].end(), fam.second.begin(), fam.second.end());
fam.second.clear();
}
}
vector<vector<pRunner>> rawGroups;
for (auto &g : families) {
if (g.second.size() > 0) {
rawGroups.emplace_back();
rawGroups.back().swap(g.second);
}
}
for (auto &g : clubs) {
if (g.second.size() > 0) {
rawGroups.emplace_back();
rawGroups.back().swap(g.second);
}
}
shuffle(rawGroups.begin(), rawGroups.end(), rnd);
stable_sort(rawGroups.begin(), rawGroups.end(),
[](const vector<pRunner> &a, const vector<pRunner> &b) {return (a.size()/4) < (b.size()/4); });
for (auto &g : rawGroups) {
if (int(g.size()) <= maxPerGroup)
rGroups.emplace_back(g, false);
else {
int nSplit = (g.size() + maxPerGroup - 1) / maxPerGroup;
sort(g.begin(), g.end(), [](const pRunner &a, const pRunner &b) {
wstring n1 = a->getFamilyName();
wstring n2 = b->getFamilyName();
return n1 < n2;
});
vector<vector<pRunner>> famGroups(1);
for (pRunner r : g) {
if (famGroups.back().empty())
famGroups.back().push_back(r);
else {
if (!sameFamily(famGroups.back().back(), r))
famGroups.emplace_back();
famGroups.back().push_back(r);
}
}
shuffle(famGroups.begin(), famGroups.end(), rnd);
stable_sort(famGroups.begin(), famGroups.end(),
[](const vector<pRunner> &a, const vector<pRunner> &b) {return (a.size() / 4) < (b.size() / 4); });
size_t nPerGroup = g.size() / nSplit + 1;
bool brk = false;
while (!famGroups.empty()) {
rGroups.emplace_back(vector<pRunner>(), brk);
auto &dst = rGroups.back().first;
brk = true;
while (!famGroups.empty() && dst.size() + famGroups.back().size() <= nPerGroup) {
dst.insert(dst.end(), famGroups.back().begin(), famGroups.back().end());
famGroups.pop_back();
}
}
}
}
}
void printGroups(gdioutput &gdibase, const list<oRunner> &Runners) {
map<int, vector<const oRunner *>> rbg;
for (const oRunner &r : Runners) {
rbg[r.getStartGroup(true)].push_back(&r);
}
gdibase.dropLine();
gdibase.addString("", 0, "List groups");
gdibase.dropLine();
map<int, int> ccCount;
for (auto rr : rbg) {
auto &vr = rr.second;
sort(vr.begin(), vr.end(), [](const oRunner *a, const oRunner *b) {
if (a->getClassId(true) != b->getClassId(true))
return a->getClassId(true) < b->getClassId(true);
else
return a->getClubId() < b->getClubId(); });
gdibase.dropLine();
gdibase.addString("", 1, "Group: " + itos(rr.first));
int cls = -1;
for (const oRunner *r : vr) {
if (cls != r->getClassId(true)) {
gdibase.dropLine();
gdibase.addString("", 1, r->getClass(true));
cls = r->getClassId(true);
}
++ccCount[cls];
gdibase.addString("", 0, itow(ccCount[cls]) + L": " + r->getCompleteIdentification());
}
}
}
}
void oEvent::drawListStartGroups(const vector<ClassDrawSpecification> &spec,
DrawMethod method, int pairSize, DrawType drawType,
bool limitGroupSize,
DrawInfo *diIn) {
int nParallel = -1;
if (diIn)
nParallel = diIn->nFields;
constexpr bool logOutput = false;
auto &sgMap = getStartGroups(true);
if (sgMap.empty())
throw meosException("No start group defined");
map<int, GroupInfo> gInfo;
vector<pair<int, int>> orderedStartGroups;
auto overlap = [](const StartGroupInfo &a, const StartGroupInfo &b) {
if (a.firstStart >= b.firstStart && a.firstStart < b.lastStart)
return true;
if (a.lastStart > b.firstStart && a.lastStart <= b.lastStart)
return true;
if (b.firstStart >= a.firstStart && b.firstStart < a.lastStart)
return true;
if (b.lastStart > a.firstStart && b.lastStart <= a.lastStart)
return true;
return false;
};
auto formatSG = [this](int id, const StartGroupInfo &a) {
wstring w = itow(id);
if (!a.name.empty())
w += L"/" + a.name;
w += L" (" + getAbsTime(a.firstStart) + makeDash(L"-") + getAbsTime(a.lastStart) + L")";
return w;
};
for (auto &sg : sgMap) {
orderedStartGroups.emplace_back(sg.second.firstStart, sg.first);
// Check overlaps
for (auto &sgOther : sgMap) {
if (sg.first == sgOther.first)
continue;
if (overlap(sg.second, sgOther.second)) {
wstring s1 = formatSG(sg.first, sg.second), s2 = formatSG(sgOther.first, sgOther.second);
throw meosException(L"Startgrupperna X och Y överlappar.#" + s1 + L"#" + s2);
}
}
}
// Order by start time
sort(orderedStartGroups.begin(), orderedStartGroups.end());
int fs = orderedStartGroups[0].first; // First start
vector<pair<int, int>> rPerGroupTotal;
map<int, int> gId2Ix;
for (auto &sg : orderedStartGroups) {
gId2Ix[sg.second] = rPerGroupTotal.size();
rPerGroupTotal.emplace_back(0, sg.second);
}
for (size_t k = 0; k < spec.size(); k++) {
auto &s = spec[k];
auto &gi = gInfo[s.classID];
gi.ix = k;
gi.firstStart = fs;
gi.rPerGroup.resize(sgMap.size());
}
vector<pRunner> unassigned;
int total = 0;
for (auto &r : Runners) {
if (r.isRemoved() || r.isVacant())
continue;
r.tmpStartGroup = 0;
int clsId = r.getClassId(true);
auto res = gInfo.find(clsId);
if (res != gInfo.end()) {
total++;
int id = r.getStartGroup(false);
auto idRes = gId2Ix.find(id);
if (idRes != gId2Ix.end()) {
++res->second.rPerGroup[idRes->second];
++rPerGroupTotal[idRes->second].first;
}
else {
if (id > 0)
throw meosException(L"Startgrupp med id X tilldelad Y finns inte.#" + itow(id) + L"#" + r.getCompleteIdentification());
++res->second.unassigned;
unassigned.push_back(&r);
}
}
}
vector<pair<vector<pRunner>, bool>> uaGroups;
unsigned seed = (unsigned)chrono::system_clock::now().time_since_epoch().count();
auto rnd = std::default_random_engine(seed);
int maxPerGroup = Runners.size();
if (limitGroupSize)
maxPerGroup = max(int(Runners.size() / sgMap.size()) / 4, 4);
groupUnassignedRunners(unassigned, uaGroups, maxPerGroup, rnd );
int nPerGroupAvg = (total * 9) / (sgMap.size() * 10);
shuffle(rPerGroupTotal.begin(), rPerGroupTotal.end(), rnd);
// Assign to groups
while (!uaGroups.empty()) {
stable_sort(rPerGroupTotal.begin(), rPerGroupTotal.end(),
[](const pair<int,int> &a, const pair<int, int> &b) {return (a.first / 4) < (b.first / 4); });
// Setup map to next start group
map<int, int> nextGroup;
auto getNextGroup = [&](int ix) {
if (nextGroup.empty()) {
for (size_t k = 0; k < rPerGroupTotal.size(); k++) {
int srcId = rPerGroupTotal[k].second;
for (size_t j = 0; j < orderedStartGroups.size(); j++) {
if (orderedStartGroups[j].second == srcId) {
int nextGrpId;
if (j + 1 < orderedStartGroups.size())
nextGrpId = orderedStartGroups[j + 1].second;
else
nextGrpId = orderedStartGroups[0].second;
for (size_t kk = 0; kk < rPerGroupTotal.size(); kk++) {
if (rPerGroupTotal[kk].second == nextGrpId) {
nextGroup[k] = kk;
break;
}
}
break;
}
}
}
}
return nextGroup[ix];
};
int nextGroupToUse = -1;
for (size_t k = 0; k < rPerGroupTotal.size(); k++) {
if (nextGroupToUse == -1)
nextGroupToUse = k;
int &nGroup = rPerGroupTotal[nextGroupToUse].first;
int groupId = rPerGroupTotal[nextGroupToUse].second;
int currentGroup = nextGroupToUse;
nextGroupToUse = -1;
if (logOutput) {
gdibase.dropLine();
gdibase.addString("", 1, "Group: " + itos(groupId) + " (" + itos(nGroup) + ")");
}
while (nGroup <= nPerGroupAvg && !uaGroups.empty()) {
for (pRunner ua : uaGroups.back().first) {
ua->tmpStartGroup = groupId;
auto &gi = gInfo[ua->getClassId(true)];
int j = gId2Ix[groupId];
++gi.rPerGroup[j];
nGroup++;
}
bool skip = uaGroups.back().second;
uaGroups.pop_back();
if (skip) {
nextGroupToUse = getNextGroup(currentGroup);
break; // Assign to next group (same club)
}
}
}
nPerGroupAvg++; // Ensure convergance
}
// vacantPerGroup
for (size_t k = 0; k < spec.size(); k++) {
auto &gi = gInfo[spec[k].classID];
gi.vacantPerGroup.resize(sgMap.size());
for (int j = 0; j < spec[k].vacances; j++)
++gi.vacantPerGroup[GetRandomNumber(sgMap.size())];
}
if (logOutput)
printGroups(gdibase, Runners);
map<int, int> rPerGroup;
// Ensure not too many competitors in same class per groups
vector<map<int, map<int, int>>> countClassGroupClub(spec.size());
vector<pRunner> rl;
map<int, double> classFractions;
map<pair<int,int>, double> clubFractions;
int rTot = 0;
for (size_t k = 0; k < spec.size(); k++) {
auto &countGroupClub = countClassGroupClub[k];
int cls = spec[k].classID;
getRunners(cls, 0, rl, false);
classFractions[cls] = (double)rl.size();
rTot += rl.size();
for (pRunner r : rl) {
int gid = r->getStartGroup(true);
++rPerGroup[gid];
int club = r->getClubId();
if (club != 0) {
++clubFractions[make_pair(club,cls)];
++countGroupClub[gid][club]; // Count per club
}
++countGroupClub[gid][0]; // Count all
}
}
double q = 1.0 / rTot;
for (auto &e : classFractions)
e.second *= q;
for (auto &e : clubFractions)
e.second *= (q / classFractions[e.first.second]);
vector<tuple<int, int, int, int>> moveFromGroupClassClub;
// For each start group, count class members in each class and per club
vector<pair<int, int>> numberClub;
for (size_t j = 0; j < orderedStartGroups.size(); j++) {
auto &g = orderedStartGroups[j];
int groupId = g.second;
for (size_t k = 0; k < spec.size(); k++) {
auto &countGroupClub = countClassGroupClub[k];
int cls = spec[k].classID;
const int nTotal = countGroupClub[groupId][0];
int clubSwitch = 0; // 0 any club, or specified club id.
int numNeedSwitch = 0;
if (nTotal > 3) {
numberClub.clear();
for (auto &clubCount : countGroupClub[groupId]) {
if (clubCount.first != 0)
numberClub.emplace_back(clubCount.second, clubCount.first);
}
if (numberClub.empty())
continue;
sort(numberClub.begin(), numberClub.end());
int clbId = numberClub.back().second;
int limit = max<int>(nTotal / 2, int(nTotal*clubFractions[make_pair(clbId, cls)]));
int limitTot = int(rPerGroup[groupId] * max(0.3, classFractions[cls]));
if (numberClub.size() == 1 || numberClub.back().first > limit) {
numNeedSwitch = numberClub.back().first - limit;
clubSwitch = clbId;
}
else if (nTotal > limitTot) {
// Move from any club
numNeedSwitch = nTotal - limitTot;
clubSwitch = 0;
}
}
if (numNeedSwitch > 0) {
moveFromGroupClassClub.emplace_back(groupId, cls, clubSwitch, numNeedSwitch);
}
}
}
if (moveFromGroupClassClub.size() > 0 && limitGroupSize) {
vector<vector<pRunner>> runnersPerGroup(orderedStartGroups.size());
map<int, int> groupId2Ix;
for (size_t j = 0; j < orderedStartGroups.size(); j++)
groupId2Ix[orderedStartGroups[j].second] = j;
for (size_t k = 0; k < spec.size(); k++) {
getRunners(spec[k].classID, 0, rl, false);
for (pRunner r : rl) {
runnersPerGroup[groupId2Ix[r->tmpStartGroup]].push_back(r);
}
}
for (size_t j = 0; j < orderedStartGroups.size(); j++) {
shuffle(runnersPerGroup[j].begin(), runnersPerGroup[j].end(), rnd);
stable_sort(runnersPerGroup[j].begin(), runnersPerGroup[j].end(), [](pRunner a, pRunner b) {
int specA = a->getStartGroup(false);
int specB = b->getStartGroup(false);
if (specA != specB)
return specA < specB;
return a->getEntryDate(false) > b->getEntryDate(false);
});
}
map<int, map<pair<int, int>, int>> classClubCountByGroup;
for (auto ms : moveFromGroupClassClub) {
int groupId = get<0>(ms);
int clsId = get<1>(ms);
int clubId = get<2>(ms);
int cnt = get<3>(ms);
classClubCountByGroup[groupId][make_pair(clsId, clubId)] = cnt;
}
for (size_t j = 0; j < orderedStartGroups.size(); j++) {
int thisGroupId = orderedStartGroups[j].second;
auto &classClubCount = classClubCountByGroup[thisGroupId];
for (pRunner &r : runnersPerGroup[j]) {
if (!r)
continue;
int cls = r->getClassId(true);
int club = r->getClubId();
auto res = classClubCount.find(make_pair(cls, club));
int type = 0;
if (res != classClubCount.end()) {
if (res->second > 0) {
--res->second;
type = 1;
}
}
else {
res = classClubCount.find(make_pair(cls, 0));
if (res != classClubCount.end()) {
if (res->second > 0) {
--res->second;
type = 2;
}
}
}
if (type == 0)
continue; //do not move
constexpr int done = 100;
for (int iter = 0; iter < 5; iter++) {
int nextG = -1;
if ((iter & 1) == 0)
nextG = j + (iter / 2 + 1);
else
nextG = j - (iter / 2 + 1);
if (size_t(nextG) >= runnersPerGroup.size())
continue;
int nextGroupId = orderedStartGroups[nextG].second;
auto &nextClassClubCount = classClubCountByGroup[nextGroupId];
if (type == 1 && nextClassClubCount.find(make_pair(cls, club)) != nextClassClubCount.end())
continue;
for (pRunner &rr : runnersPerGroup[nextG]) {
if (rr) {
if (type == 1 && rr->getClassId(true) == cls && rr->getClubId() != club) {
rr->tmpStartGroup = orderedStartGroups[j].second;
r->tmpStartGroup = orderedStartGroups[nextG].second;
rr = nullptr;
r = nullptr;
iter = done;
break;
}
else if (type == 2 && rr->getClassId(true) != cls) {
rr->tmpStartGroup = orderedStartGroups[j].second;
r->tmpStartGroup = orderedStartGroups[nextG].second;
rr = nullptr;
r = nullptr;
iter = done;
break;
}
}
}
}
}
}
}
if (logOutput) {
gdibase.addString("", 0, "Reordered groups");
printGroups(gdibase, Runners);
}
if (spec.size() == 1) {
for (size_t j = 0; j < orderedStartGroups.size(); j++) {
auto &sg = orderedStartGroups[j];
int groupId = sg.second;
int firstStart = getStartGroup(groupId).firstStart;
vector<ClassDrawSpecification> specLoc = spec;
for (size_t k = 0; k < specLoc.size(); k++) {
auto &gi = gInfo[specLoc[k].classID];
specLoc[k].startGroup = groupId;
specLoc[k].firstStart = max(gi.firstStart, firstStart);
specLoc[k].vacances = gi.vacantPerGroup[j];
gi.firstStart = specLoc[k].firstStart + specLoc[k].interval * (specLoc[k].vacances + gi.rPerGroup[j]);
}
drawList(specLoc, method, pairSize, drawType);
}
}
else {
int leg = spec[0].leg;
VacantPosition vp = VacantPosition::Mixed;
DrawInfo di;
di.baseInterval = timeConstMinute;
di.allowNeighbourSameCourse = true;
di.extraFactor = 0;
di.minClassInterval = di.baseInterval * 2;
di.maxClassInterval = di.baseInterval * 8;
di.minVacancy = 1;
di.maxVacancy = 100;
di.vacancyFactor = 0;
if (diIn) {
di.baseInterval = diIn->baseInterval;
di.minClassInterval = diIn->minClassInterval;
di.maxCommonControl = diIn->maxCommonControl;
di.allowNeighbourSameCourse = diIn->allowNeighbourSameCourse;
}
// Update runner per group/class counters
for (auto &gi : gInfo) {
fill(gi.second.rPerGroup.begin(), gi.second.rPerGroup.end(), 0);
}
rPerGroup.clear();
for (size_t k = 0; k < spec.size(); k++) {
getRunners(spec[k].classID, 0, rl, false);
auto &gi = gInfo[spec[k].classID];
for (pRunner r : rl) {
r->setStartTime(0, true, oBase::ChangeType::Update, false);
int gid = r->getStartGroup(true);
++rPerGroup[gid];
++gi.rPerGroup[gId2Ix[gid]];
}
}
map<int, int> rPerGroup;
for (auto &gt : rPerGroupTotal)
rPerGroup[gt.second] = gt.first;
for (size_t j = 0; j < orderedStartGroups.size(); j++) {
auto &sg = orderedStartGroups[j];
int groupId = sg.second;
int firstStart = getStartGroup(groupId).firstStart;
int nspos = (oe->getStartGroup(groupId).lastStart - firstStart) / di.baseInterval;
int optimalParallel = rPerGroup[groupId] / nspos;
if (nParallel <= 0)
di.nFields = max(3, min(optimalParallel + 2, 100));
else
di.nFields = nParallel;
di.firstStart = firstStart;
di.changedVacancyInfo = false;
vector<ClassInfo> cInfo;
vector<pair<int, wstring>> outLines;
di.vacancyFactor = 0;
auto group = sgMap.find(groupId);
int length = max(300, group->second.lastStart - group->second.firstStart);
int slots = length / di.baseInterval;
di.classes.clear();
for (size_t k = 0; k < spec.size(); k++) {
auto &gi = gInfo[spec[k].classID];
int rClassGroup = gi.rPerGroup[j];
if (rClassGroup == 0)
continue;
di.classes[spec[k].classID] = ClassInfo(getClass(spec[k].classID));
ClassInfo &ci = di.classes[spec[k].classID];
ci.startGroupId = groupId;
if (gi.firstStart > firstStart) {
// Handled by distributor
// ci.firstStart = (gi.firstStart - firstStart) / di.baseInterval;
// ci.hasFixedTime = true;
}
ci.nVacant = gi.vacantPerGroup[j];
ci.nVacantSpecified = true;
ci.nExtraSpecified = true;
if (rClassGroup == 1)
ci.fixedInterval = 4;
else {
int q = slots / (rClassGroup-1);
if (q >= 12)
ci.fixedInterval = 8;
else if (q >= 6)
ci.fixedInterval = 4;
else
ci.fixedInterval = 2;
}
if (ci.fixedInterval > 2)
ci.interval = ci.fixedInterval;
else
ci.interval = spec[k].interval / di.baseInterval;
}
if (logOutput) {
gdibase.dropLine();
gdibase.addString("", 1, "Behandlar grupp: " + itos(groupId));
}
optimizeStartOrder(outLines, di, cInfo);
if (logOutput) {
for (auto &ol : outLines) {
gdibase.addString("", ol.first, ol.second);
}
}
int laststart = 0;
for (size_t k = 0; k<cInfo.size(); k++) {
const ClassInfo &ci = cInfo[k];
laststart = max(laststart, ci.firstStart + ci.nRunners*ci.interval);
}
//gdi.addStringUT(1, lang.tl("Sista start (nu tilldelad)") + L": " +
// getAbsTime((laststart)*di.baseInterval + di.firstStart));
for (size_t k = 0; k < cInfo.size(); k++) {
ClassInfo &ci = cInfo[k];
vector<ClassDrawSpecification> specx;
specx.emplace_back(ci.classId, leg,
di.firstStart + di.baseInterval * ci.firstStart,
di.baseInterval * ci.interval, ci.nVacant, vp);
auto &gi = gInfo[cInfo[k].classId];
gi.firstStart = specx[0].firstStart + specx[0].interval * (specx[0].vacances + gi.rPerGroup[j]);
specx.back().startGroup = groupId;
drawList(specx, method, pairSize, drawType);
}
}
}
}
void oEvent::drawList(const vector<ClassDrawSpecification> &spec,
DrawMethod method, int pairSize, DrawType drawType) {
autoSynchronizeLists(false);
assert(pairSize > 0);
oRunnerList::iterator it;
int VacantClubId=getVacantClub(false);
map<int, int> clsId2Ix;
set<int> clsIdClearVac;
const bool multiDay = hasPrevStage();
for (size_t k = 0; k < spec.size(); k++) {
pClass pc = getClass(spec[k].classID);
if (!pc)
throw std::exception("Klass saknas");
if (spec[k].vacances>0 && pc->getClassType()==oClassRelay)
throw std::exception("Vakanser stöds ej i stafett.");
if (spec[k].vacances>0 && (spec[k].leg>0 || pc->getParentClass()))
throw std::exception("Det går endast att sätta in vakanser på sträcka 1.");
if (size_t(spec[k].leg) < pc->legInfo.size()) {
pc->setStartType(spec[k].leg, STDrawn, true); //Automatically change start method
}
else if (spec[k].leg == -1) {
for (size_t j = 0; j < pc->legInfo.size(); j++)
pc->setStartType(j, STDrawn, true); //Automatically change start method
}
pc->synchronize(true);
clsId2Ix[spec[k].classID] = k;
if (!multiDay && spec[k].leg == 0 && pc->getParentClass() == 0)
clsIdClearVac.insert(spec[k].classID);
}
vector<pRunner> runners;
runners.reserve(Runners.size());
if (drawType == DrawType::DrawAll) {
if (!clsIdClearVac.empty()) {
//Only remove vacances on leg 0.
vector<int> toRemove;
//Remove old vacances
for (it = Runners.begin(); it != Runners.end(); ++it) {
if (clsIdClearVac.count(it->getClassId(true))) {
if (it->isRemoved())
continue;
if (it->tInTeam)
continue; // Cannot remove team runners
int k = clsId2Ix.find(it->getClassId(true))->second;
if (spec[k].startGroup > 0 &&
it->getStartGroup(true) > 0 &&
it->getStartGroup(true) != spec[k].startGroup)
continue;
if (it->getClubId() == VacantClubId) {
toRemove.push_back(it->getId());
}
}
}
removeRunner(toRemove);
toRemove.clear();
//loop over specs, check clsIdClearVac...
for (size_t k = 0; k < spec.size(); k++) {
if (!clsIdClearVac.count(spec[k].classID))
continue;
for (int i = 0; i < spec[k].vacances; i++) {
oe->addRunnerVacant(spec[k].classID)->setStartGroup(spec[k].startGroup);
}
}
}
for (it=Runners.begin(); it != Runners.end(); ++it) {
int cid = it->getClassId(true);
if (!it->isRemoved() && clsId2Ix.count(cid)) {
if (it->getStatus() == StatusNotCompetiting)
continue;
int ix = clsId2Ix[cid];
if (spec[ix].startGroup != 0 && it->getStartGroup(true) != spec[ix].startGroup)
continue;
if (it->legToRun() == spec[ix].leg || spec[ix].leg == -1) {
runners.push_back(&*it);
spec[ix].ntimes++;
}
}
}
}
else {
// Find first/last start in class and interval:
vector<int> first(spec.size(), 7*24*timeConstHour);
vector<int> last(spec.size(), 0);
set<int> cinterval;
int baseInterval = 10*timeConstMinute;
for (it=Runners.begin(); it != Runners.end(); ++it) {
if (!it->isRemoved() && clsId2Ix.count(it->getClassId(true))) {
if (it->getStatus() == StatusNotCompetiting)
continue;
int st = it->getStartTime();
int ix = clsId2Ix[it->getClassId(false)];
if (st>0) {
first[ix] = min(first[ix], st);
last[ix] = max(last[ix], st);
cinterval.insert(st);
}
else {
spec[ix].ntimes++;
runners.push_back(&*it);
}
}
}
// Find start interval
int t=0;
for (set<int>::iterator sit = cinterval.begin(); sit!=cinterval.end();++sit) {
if ( (*sit-t) > 0)
baseInterval = min(baseInterval, (*sit-t));
t = *sit;
}
for (size_t k = 0; k < spec.size(); k++) {
if (drawType == DrawType::RemainingBefore)
spec[k].firstStart = first[k] - runners.size()*baseInterval;
else
spec[k].firstStart = last[k] + baseInterval;
spec[k].interval = baseInterval;
if (last[k] == 0 || spec[k].firstStart<=0 || baseInterval == 10*timeConstMinute) {
// Fallback if incorrect specification.
spec[k].firstStart = timeConstHour;
spec[k].interval = 2*timeConstMinute;
}
}
}
if (runners.empty())
return;
vector<int> stimes(runners.size());
int nr = 0;
for (size_t k = 0; k < spec.size(); k++) {
for (int i = 0; i < spec[k].ntimes; i++) {
int kx = i/pairSize;
stimes[nr++] = spec[k].firstStart + spec[k].interval * kx;
}
}
if (spec.size() > 1)
sort(stimes.begin(), stimes.end());
if (gdibase.isTest())
InitRanom(0,0);
vector<pRunner> vacant;
VacantPosition vp = spec[0].vacantPosition;
if (vp != VacantPosition::Mixed) {
// Move vacants to a dedicated container
for (size_t k = 0; k < runners.size(); k++) {
if (runners[k]->isVacant()) {
vacant.push_back(runners[k]);
swap(runners[k], runners.back());
runners.pop_back();
k--;
}
}
}
switch (method) {
case DrawMethod::SOFT:
drawSOFTMethod(runners, true);
break;
case DrawMethod::MeOS:
drawMeOSMethod(runners);
break;
case DrawMethod::Random:
{
vector<int> pv(runners.size());
for (size_t k = 0; k < pv.size(); k++)
pv[k] = k;
permute(pv);
vector<pRunner> r2(runners.size());
for (size_t k = 0; k < pv.size(); k++)
r2[k] = runners[pv[k]];
r2.swap(runners);
}
break;
default:
throw 0;
}
if (vp == VacantPosition::First) {
runners.insert(runners.begin(), vacant.begin(), vacant.end());
}
else if (vp == VacantPosition::Last) {
runners.insert(runners.end(), vacant.begin(), vacant.end());
}
int minStartNo = Runners.size();
vector<pair<int, int>> newStartNo;
for(unsigned k=0;k<stimes.size(); k++) {
runners[k]->setStartTime(stimes[k], true, ChangeType::Update, false);
runners[k]->synchronize();
minStartNo = min(minStartNo, runners[k]->getStartNo());
newStartNo.emplace_back(stimes[k], k);
}
/*
gdibase.dropLine();
gdibase.addString("", 1, L"Draw: " + oe->getClass(spec[0].classID)->getName());
for (unsigned k = 0; k < stimes.size(); k++) {
gdibase.addString("", 0, runners[k]->getCompleteIdentification() + L" " + runners[k]->getStartTimeS());
}
*/
sort(newStartNo.begin(), newStartNo.end());
//CurrentSortOrder = SortByStartTime;
//sort(runners.begin(), runners.end());
if (minStartNo == 0)
minStartNo = nextFreeStartNo + 1;
for(size_t k=0; k<runners.size(); k++) {
pClass pCls = runners[k]->getClassRef(true);
if (pCls && pCls->lockedForking() || runners[k]->getLegNumber() > 0)
continue;
runners[k]->updateStartNo(newStartNo[k].second + minStartNo);
}
nextFreeStartNo = max<int>(nextFreeStartNo, minStartNo + stimes.size());
}
void oEvent::drawListClumped(int ClassID, int FirstStart, int Interval, int Vacances)
{
pClass pc=getClass(ClassID);
if (!pc)
throw std::exception("Klass saknas");
if (Vacances>0 && pc->getClassType()!=oClassIndividual)
throw std::exception("Lottningsmetoden stöds ej i den här klassen.");
oRunnerList::iterator it;
int nRunners=0;
autoSynchronizeLists(false);
while (Vacances>0) {
addRunnerVacant(ClassID);
Vacances--;
}
for (it = Runners.begin(); it != Runners.end(); ++it) {
if (it->Class && it->Class->Id == ClassID && !it->isRemoved()) nRunners++;
}
if (nRunners==0) return;
int *stimes=new int[nRunners];
//Number of start groups
//int ngroups=(nRunners/5)
int ginterval;
if (nRunners>=Interval)
ginterval=10 * timeConstSecond;
else if (Interval/nRunners>60*timeConstSecond){
ginterval=40 * timeConstSecond;
}
else if (Interval/nRunners>30 * timeConstSecond){
ginterval=20 * timeConstSecond;
}
else if (Interval/nRunners>20 * timeConstSecond){
ginterval=15 * timeConstSecond;
}
else if (Interval/nRunners>10 * timeConstSecond){
ginterval=12 * timeConstSecond;
}
else ginterval=10 * timeConstSecond;
int nGroups=Interval/ginterval+1; //15 s. per interval.
nGroups = min(nGroups, 2*nRunners+1);
int k;
if (nGroups>0){
int MaxRunnersGroup=max((2*nRunners)/nGroups, 4)+GetRandomNumber(2);
vector<int> sgroups(nGroups);
for(k=0;k<nGroups; k++)
sgroups[k]=FirstStart+((ginterval*k+2)/5)*5;
if (nGroups>5){
//Remove second group...
sgroups[1]=sgroups[nGroups-1];
nGroups--;
}
if (nGroups>9 && ginterval<60 && (GetRandomBit() || GetRandomBit() || GetRandomBit())){
//Remove third group...
sgroups[2]=sgroups[nGroups-1];
nGroups--;
if (nGroups>13 && ginterval<30 && (GetRandomBit() || GetRandomBit() || GetRandomBit())){
//Remove third group...
sgroups[3]=sgroups[nGroups-1];
nGroups--;
int ng=4; //Max two minutes pause
while(nGroups>10 && (nRunners/nGroups)<MaxRunnersGroup && ng<8 && (GetRandomBit() || GetRandomBit())){
//Remove several groups...
sgroups[ng]=sgroups[nGroups-1];
nGroups--;
ng++;
}
}
}
//Permute some of the groups (not first and last group = group 0 and 1)
if (nGroups>5){
permute(sgroups.data() + 2, nGroups - 2);
//Remove some random groups (except first and last = group 0 and 1).
for(k=2;k<nGroups; k++){
if ((nRunners/nGroups)<MaxRunnersGroup && nGroups>5){
sgroups[k]=sgroups[nGroups-1];
nGroups--;
}
}
}
//Premute all groups;
permute(sgroups.data(), nGroups);
vector<int> counters(nGroups);
stimes[0]=FirstStart;
stimes[1]=FirstStart+Interval;
for(k=2;k<nRunners; k++){
int g=GetRandomNumber(nGroups);
if (counters[g]<=2 && GetRandomBit()){
//Prefer already large groups
g=(g+1)%nGroups;
}
if (counters[g]>MaxRunnersGroup){
g=(g+3)%nGroups;
}
if (sgroups[g]==FirstStart){
//Avoid first start
if (GetRandomBit() || GetRandomBit())
g=(g+1)%nGroups;
}
if (counters[g]>MaxRunnersGroup){
g=(g+2)%nGroups;
}
if (counters[g]>MaxRunnersGroup){
g=(g+2)%nGroups;
}
stimes[k]=sgroups[g];
counters[g]++;
}
}
else{
for(k=0;k<nRunners; k++) stimes[k]=FirstStart;
}
permute(stimes, nRunners);
k=0;
for (it = Runners.begin(); it != Runners.end(); ++it) {
if (it->Class && it->Class->Id == ClassID && !it->isRemoved()) {
it->setStartTime(stimes[k++], true, oBase::ChangeType::Update, false);
it->StartNo = k;
it->synchronize();
}
}
reCalculateLeaderTimes(ClassID);
delete[] stimes;
}
void oEvent::automaticDrawAll(gdioutput &gdi,
const wstring &firstStart,
const wstring &minIntervall,
const wstring &vacances,
VacantPosition vp,
bool lateBefore,
bool allowNeighbourSameCourse,
DrawMethod method,
int pairSize) {
gdi.refresh();
const int leg = 0;
const double extraFactor = 0.0;
int drawn = 0;
int baseInterval = convertAbsoluteTimeMS(minIntervall)/2;
if (baseInterval == 0) {
gdi.fillDown();
int iFirstStart = getRelativeTime(firstStart);
if (iFirstStart>0)
gdi.addString("", 1, "Gemensam start");
else {
gdi.addString("", 1, "Nollställer starttider");
iFirstStart = 0;
}
gdi.refreshFast();
gdi.dropLine();
for (oClassList::iterator it = Classes.begin(); it!=Classes.end(); ++it) {
if (it->isRemoved())
continue;
vector<ClassDrawSpecification> spec;
spec.emplace_back(it->getId(), 0, iFirstStart, 0, 0, vp);
drawList(spec, DrawMethod::Random, 1, DrawType::DrawAll);
}
return;
}
if (baseInterval<timeConstSecond || baseInterval>timeConstHour)
throw std::exception("Felaktigt tidsformat för intervall");
int iFirstStart = getRelativeTime(firstStart);
if (iFirstStart<=0)
throw std::exception("Felaktigt tidsformat för första start");
double vacancy = _wtof(vacances.c_str())/100;
gdi.fillDown();
gdi.addString("", 1, "Automatisk lottning").setColor(colorGreen);
gdi.addString("", 0, "Inspekterar klasser...");
gdi.refreshFast();
set<int> notDrawn;
getNotDrawnClasses(notDrawn, false);
set<int> needsCompletion;
getNotDrawnClasses(needsCompletion, true);
for(set<int>::iterator it = notDrawn.begin(); it!=notDrawn.end(); ++it)
needsCompletion.erase(*it);
//Start with not drawn classes
map<wstring, int> starts;
map<pClass, int> runnersPerClass;
// Count number of runners per start
for (oRunnerList::iterator it = Runners.begin(); it!=Runners.end(); ++it) {
if (it->skip())
continue;
if (it->tLeg != leg)
continue;
if (it->isVacant() && notDrawn.count(it->getClassId(false))==1)
continue;
pClass pc = it->Class;
if (pc && pc->hasFreeStart())
continue;
if (pc)
++starts[pc->getStart()];
++runnersPerClass[pc];
}
while ( !starts.empty() ) {
// Select smallest start
int runnersStart = Runners.size()+1;
wstring start;
for ( map<wstring, int>::iterator it = starts.begin(); it != starts.end(); ++it) {
if (runnersStart > it->second) {
start = it->first;
runnersStart = it->second;
}
}
starts.erase(start);
// Estimate parameters for start
DrawInfo di;
int maxRunners = 0;
// Find largest class in start;
for (oClassList::iterator it = Classes.begin(); it!=Classes.end(); ++it) {
if (it->getStart() != start)
continue;
if (it->hasFreeStart())
continue;
maxRunners = max(maxRunners, runnersPerClass[&*it]);
}
if (maxRunners==0)
continue;
if (getStartGroups(true).size() == 0) {
int maxParallell = 15;
if (runnersStart < 100)
maxParallell = 4;
else if (runnersStart < 300)
maxParallell = 6;
else if (runnersStart < 700)
maxParallell = 10;
else if (runnersStart < 1000)
maxParallell = 12;
else
maxParallell = 15;
int optimalParallel = runnersStart / (maxRunners * 2); // Min is every second interval
di.nFields = max(3, min(optimalParallel + 2, 15));
di.baseInterval = baseInterval;
di.extraFactor = extraFactor;
di.firstStart = iFirstStart;
di.minClassInterval = baseInterval * 2;
di.maxClassInterval = di.minClassInterval;
di.minVacancy = 1;
di.maxVacancy = 100;
di.vacancyFactor = vacancy;
di.allowNeighbourSameCourse = allowNeighbourSameCourse;
di.startName = start;
for (oClassList::iterator it = Classes.begin(); it != Classes.end(); ++it) {
if (it->getStart() != start)
continue;
if (notDrawn.count(it->getId()) == 0)
continue; // Only not drawn classes
if (it->hasFreeStart())
continue;
di.classes[it->getId()] = ClassInfo(&*it);
}
if (di.classes.size() == 0)
continue;
gdi.dropLine();
gdi.addStringUT(1, lang.tl(L"Optimerar startfördelning ") + start);
gdi.refreshFast();
gdi.dropLine();
vector<ClassInfo> cInfo;
vector<pair<int, wstring>> outLines;
optimizeStartOrder(outLines, di, cInfo);
for (auto &ol : outLines)
gdi.addString("", ol.first, ol.second);
int laststart = 0;
for (size_t k = 0; k < cInfo.size(); k++) {
const ClassInfo &ci = cInfo[k];
laststart = max(laststart, ci.firstStart + ci.nRunners*ci.interval);
}
gdi.addStringUT(1, lang.tl("Sista start (nu tilldelad)") + L": " +
getAbsTime((laststart)*di.baseInterval + di.firstStart));
gdi.dropLine();
gdi.refreshFast();
for (size_t k = 0; k < cInfo.size(); k++) {
const ClassInfo &ci = cInfo[k];
if (getClass(ci.classId)->getClassType() == oClassRelay) {
gdi.addString("", 0, L"Hoppar över stafettklass: X#" +
getClass(ci.classId)->getName()).setColor(colorRed);
continue;
}
gdi.addString("", 0, L"Lottar: X#" + getClass(ci.classId)->getName());
vector<ClassDrawSpecification> spec;
spec.emplace_back(ci.classId, leg,
di.firstStart + di.baseInterval * ci.firstStart,
di.baseInterval * ci.interval, ci.nVacant, vp);
drawList(spec, method, pairSize, DrawType::DrawAll);
gdi.scrollToBottom();
gdi.refreshFast();
drawn++;
}
}
else {
vector<ClassDrawSpecification> spec;
for (oClassList::iterator it = Classes.begin(); it != Classes.end(); ++it) {
if (it->getStart() != start)
continue;
if (notDrawn.count(it->getId()) == 0)
continue; // Only not drawn classes
if (it->hasFreeStart())
continue;
//int classID, int leg, int firstStart, int interval, int vacances, oEvent::VacantPosition vp)
spec.emplace_back(it->getId(), 0, 0, 120, 1, VacantPosition::Mixed);
drawn++;
}
if (spec.size() == 0)
continue;
try {
drawListStartGroups(spec, method, pairSize, DrawType::DrawAll);
}
catch (meosException &ex) {
gdi.addString("", 1, ex.wwhat()).setColor(colorRed);
// Relay classes?
gdi.dropLine();
gdi.refreshFast();
return;
}
}
}
// Classes that need completion
for (oClassList::iterator it = Classes.begin(); it!=Classes.end(); ++it) {
if (needsCompletion.count(it->getId())==0)
continue;
if (it->hasFreeStart())
continue;
gdi.addStringUT(0, lang.tl(L"Lottar efteranmälda: ") + it->getName());
vector<ClassDrawSpecification> spec;
spec.emplace_back(it->getId(), leg, 0, 0, 0, vp);
drawList(spec, method, 1, lateBefore ? DrawType::RemainingBefore : DrawType::RemainingAfter);
gdi.scrollToBottom();
gdi.refreshFast();
drawn++;
}
gdi.dropLine();
if (drawn==0)
gdi.addString("", 1, "Klart: inga klasser behövde lottas.").setColor(colorGreen);
else
gdi.addString("", 1, "Klart: alla klasser lottade.").setColor(colorGreen);
// Relay classes?
gdi.dropLine();
gdi.refreshFast();
}
void oEvent::drawPersuitList(int classId, int firstTime, int restartTime,
int maxTime, int interval,
int pairSize, bool reverse, double scale) {
if (classId<=0)
return;
pClass pc=getClass(classId);
if (!pc)
throw std::exception("Klass saknas");
const int leg = 0;
if (size_t(leg) < pc->legInfo.size()) {
pc->legInfo[leg].startMethod = STDrawn; //Automatically change start method
}
vector<pRunner> trunner;
getRunners(classId, 0, trunner);
vector<pRunner> runner;
runner.reserve(trunner.size());
for (size_t k = 0; k< trunner.size(); k++) // Only treat specified leg
if (trunner[k]->tLeg == leg)
runner.push_back(trunner[k]);
if (runner.empty())
return;
// Make sure patrol members use the same time
vector<int> adjustedTimes(runner.size());
for (size_t k = 0; k<runner.size(); k++) {
if (runner[k]->inputStatus == StatusOK && runner[k]->inputTime>0) {
int it = runner[k]->inputTime;
if (runner[k]->tInTeam) {
for (size_t j = 0; j < runner[k]->tInTeam->Runners.size(); j++) {
int it2 = runner[k]->tInTeam->Runners[j]->inputTime;
if (it2 > 0)
it = max(it, it2);
}
}
adjustedTimes[k] = it;
}
}
vector< pair<int, int> > times(runner.size());
for (size_t k = 0; k<runner.size(); k++) {
times[k].second = k;
if (runner[k]->inputStatus == StatusOK && adjustedTimes[k]>0) {
if (scale != 1.0)
times[k].first = int(floor(double(adjustedTimes[k]) * scale + 0.5));
else
times[k].first = adjustedTimes[k];
}
else {
times[k].first = timeConstHour * 24 * 7 + runner[k]->inputStatus;
if (runner[k]->isVacant())
times[k].first += 10; // Vacansies last
}
}
// Sorted by name in input
stable_sort(times.begin(), times.end());
int delta = times[0].first;
if (delta >= timeConstHour*24*7)
delta = 0;
int reverseDelta = 0;
if (reverse) {
for (size_t k = 0; k<times.size(); k++) {
if ((times[k].first - delta) < maxTime)
reverseDelta = times[k].first;
}
}
int odd = 0;
int breakIndex = -1;
for (size_t k = 0; k<times.size(); k++) {
pRunner r = runner[times[k].second];
if ((times[k].first - delta) < maxTime && breakIndex == -1) {
if (!reverse)
r->setStartTime(firstTime + times[k].first - delta, true, ChangeType::Update, false);
else
r->setStartTime(firstTime - times[k].first + reverseDelta, true, ChangeType::Update, false);
}
else if (!reverse) {
if (breakIndex == -1)
breakIndex = k;
r->setStartTime(restartTime + ((k - breakIndex)/pairSize) * interval, true, ChangeType::Update, false);
}
else {
if (breakIndex == -1) {
breakIndex = times.size() - 1;
odd = times.size() % 2;
}
r->setStartTime(restartTime + ((breakIndex - k + odd)/pairSize) * interval, true, ChangeType::Update, false);
}
r->synchronize(true);
}
reCalculateLeaderTimes(classId);
}