/************************************************************************ MeOS - Orienteering Software Copyright (C) 2009-2020 Melin Software HB This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License fro more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Melin Software HB - software@melin.nu - www.melin.nu Eksoppsvägen 16, SE-75646 UPPSALA, Sweden ************************************************************************/ #include "stdafx.h" #include #include #include #include #include #include "oEvent.h" #include "gdioutput.h" #include "oDataContainer.h" #include "random.h" #include "meos.h" #include "meos_util.h" #include "localizer.h" #include "gdifonts.h" #include "oEventDraw.h" #include "meosexception.h" int ClassInfo::sSortOrder=0; DrawInfo::DrawInfo() { changedVacancyInfo = true; changedExtraInfo = true; vacancyFactor = 0.05; extraFactor = 0.1; minVacancy = 1; maxVacancy = 10; baseInterval = 60; minClassInterval = 120; maxClassInterval = 180; nFields = 10; firstStart = 3600; maxCommonControl = 3; allowNeighbourSameCourse = true; coursesTogether = false; // Statistics output from optimize start order numDistinctInit = -1; numRunnerSameInitMax = -1; minimalStartDepth = -1; } bool ClassInfo::operator <(ClassInfo &ci) { if (sSortOrder==0) { return sortFactor > ci.sortFactor; } else if (sSortOrder == 2) { return pc->getSortIndex() < ci.pc->getSortIndex(); } else if (sSortOrder == 3) { if (unique != ci.unique) { if (ci.nRunnersGroup != nRunnersGroup) return nRunnersGroup > ci.nRunnersGroup; else return unique < ci.unique; } else return firstStart > &clubRunner, vector &largest) { size_t maxClub = 0; for (map >::iterator it = clubRunner.begin(); it != clubRunner.end(); ++it) { maxClub = max(maxClub, it->second.size()); } for (map >::iterator it = clubRunner.begin(); it != clubRunner.end(); ++it) { if (it->second.size() == maxClub) { swap(largest, it->second); clubRunner.erase(it); return; } } } void getRange(int size, vector &p) { p.resize(size); for (size_t k = 0; k < p.size(); k++) p[k] = k; } void drawSOFTMethod(vector &runners, bool handleBlanks) { if (runners.empty()) return; //Group runners per club map > clubRunner; for (size_t k = 0; k < runners.size(); k++) { int clubId = runners[k] ? runners[k]->getClubId() : -1; clubRunner[clubId].push_back(runners[k]); } vector< vector > runnerGroups(1); // Find largest club getLargestClub(clubRunner, runnerGroups[0]); int largeSize = runnerGroups[0].size(); int ngroups = (runners.size() + largeSize - 1) / largeSize; runnerGroups.resize(ngroups); while (!clubRunner.empty()) { // Find the smallest available group unsigned small = runners.size() + 1; int cgroup = -1; for (size_t k = 1; k < runnerGroups.size(); k++) if (runnerGroups[k].size() < small) { cgroup = k; small = runnerGroups[k].size(); } // Add the largest remaining group to the smallest. vector largest; getLargestClub(clubRunner, largest); runnerGroups[cgroup].insert(runnerGroups[cgroup].end(), largest.begin(), largest.end()); } unsigned maxGroup = runnerGroups[0].size(); //Permute the first group vector pg(maxGroup); getRange(pg.size(), pg); permute(pg); vector pr(maxGroup); for (unsigned k = 0; k < maxGroup; k++) pr[k] = runnerGroups[0][pg[k]]; runnerGroups[0] = pr; //Find the largest group for (size_t k = 1; k < runnerGroups.size(); k++) maxGroup = max(maxGroup, runnerGroups[k].size()); if (handleBlanks) { //Give all groups same size (fill with 0) for (size_t k = 1; k < runnerGroups.size(); k++) runnerGroups[k].resize(maxGroup); } // Apply algorithm recursivly to groups with several clubs for (size_t k = 1; k < runnerGroups.size(); k++) drawSOFTMethod(runnerGroups[k], true); // Permute the order of groups vector p(runnerGroups.size()); getRange(p.size(), p); permute(p); // Write back result int index = 0; for (unsigned level = 0; level < maxGroup; level++) { for (size_t k = 0; k < runnerGroups.size(); k++) { int gi = p[k]; if (level < runnerGroups[gi].size() && (runnerGroups[gi][level] != 0 || !handleBlanks)) runners[index++] = runnerGroups[gi][level]; } } if (handleBlanks) runners.resize(index); } void drawMeOSMethod(vector &runners) { if (runners.empty()) return; map> runnersPerClub; for (pRunner r : runners) runnersPerClub[r->getClubId()].push_back(r); vector> sizeClub; for (auto &rc : runnersPerClub) sizeClub.emplace_back(rc.second.size(), rc.first); sort(sizeClub.rbegin(), sizeClub.rend()); int targetGroupSize = max(runners.size()/20, sizeClub.front().first); vector> groups(1); for (auto &sc : sizeClub) { int currentSize = groups.back().size(); int newSize = currentSize + sc.first; if (abs(currentSize - targetGroupSize) < abs(newSize - targetGroupSize)) { groups.emplace_back(); } groups.back().insert(groups.back().end(), runnersPerClub[sc.second].begin(), runnersPerClub[sc.second].end()); } size_t nRunnerTot = runners.size(); if (groups.front().size() > (nRunnerTot + 2) / 2 && groups.size() > 1) { // We cannot distribute without clashes -> move some to other groups to prevent tail of same club int toMove = groups.front().size() - (nRunnerTot + 2) / 2; for (int i = 0; i < toMove; i++) { int dest = 1 + i % (groups.size() - 1); groups[dest].push_back(groups.front().back()); groups.front().pop_back(); } } // Permute groups size_t maxGroupSize = 0; vector pv; for (auto &group : groups) { pv.clear(); for (size_t i = 0; i < group.size(); i++) { pv.push_back(i); } permute(pv); vector tg; tg.reserve(group.size()); for (int i : pv) tg.push_back(group[i]); tg.swap(group); maxGroupSize = max(maxGroupSize, group.size()); } runners.clear(); size_t takeMaxGroupInterval; if (groups.size() > 10) takeMaxGroupInterval = groups.size() / 4; else takeMaxGroupInterval = max(2u, groups.size() - 2); deque recentGroups; int ix = 0; if (maxGroupSize * 2 > nRunnerTot) { takeMaxGroupInterval = 2; ix = 1; } while (true) { ix++; pair currentMaxGroup(0, -1); int otherNonEmpty = -1; size_t nonEmptyGroups = 0; for (size_t gx = 0; gx < groups.size(); gx++) { if (groups[gx].empty()) continue; nonEmptyGroups++; if (groups[gx].size() > currentMaxGroup.first) { if (otherNonEmpty == -1 || groups[otherNonEmpty].size() < currentMaxGroup.first) otherNonEmpty = currentMaxGroup.second; currentMaxGroup.first = groups[gx].size(); currentMaxGroup.second = gx; } else { if (otherNonEmpty == -1 || groups[otherNonEmpty].size() < groups[gx].size()) otherNonEmpty = gx; } } if (currentMaxGroup.first == 0) break; // Done int groupToUse = currentMaxGroup.second; if (ix != takeMaxGroupInterval) { // Select some other group for (size_t attempt = 0; attempt < groups.size() * 2; attempt++) { int g = GetRandomNumber(groups.size()); if (!groups[g].empty() && count(recentGroups.begin(), recentGroups.end(), g) == 0) { groupToUse = g; break; } } } else { ix = 0; } if (!recentGroups.empty()) { //Make sure to avoid duplicates of same group (if possible) if (recentGroups.back() == groupToUse && otherNonEmpty != -1) groupToUse = otherNonEmpty; } // Try to spread groups by ensuring that the same group is not used near itself recentGroups.push_back(groupToUse); if (recentGroups.size() > takeMaxGroupInterval || recentGroups.size() >= nonEmptyGroups) recentGroups.pop_front(); runners.push_back(groups[groupToUse].back()); groups[groupToUse].pop_back(); } } bool isFree(const DrawInfo &di, vector< vector > > &StartField, int nFields, int FirstPos, int PosInterval, ClassInfo &cInfo) { int Type = cInfo.unique; int courseId = cInfo.courseId; int nEntries = cInfo.nRunners; bool disallowNeighbors = !di.allowNeighbourSameCourse; // Adjust first pos to make room for extra (before first start) if (cInfo.nExtra > 0) { int newFirstPos = FirstPos - cInfo.nExtra * PosInterval; while (newFirstPos < 0) newFirstPos += PosInterval; int extra = (FirstPos - newFirstPos) / PosInterval; nEntries += extra; FirstPos = newFirstPos; } //Check if free at all... for (int k = 0; k < nEntries; k++) { bool hasFree = false; for (int f = 0; f < nFields; f++) { size_t ix = FirstPos + k * PosInterval; int t = StartField[f][ix].first; if (disallowNeighbors) { int prevT = -1, nextT = -1; if (PosInterval > 1 && ix + 1 < StartField[f].size()) nextT = StartField[f][ix + 1].second; if (PosInterval > 1 && ix > 0) prevT = StartField[f][ix - 1].second; if ((nextT > 0 && nextT == courseId) || (prevT > 0 && prevT == courseId)) return false; } if (t == 0) hasFree = true; else if (t == Type) return false;//Type of course occupied. Cannot put it here; } if (!hasFree) return false;//No free start position. } return true; } bool insertStart(vector< vector< pair > > &StartField, int nFields, ClassInfo &cInfo) { int Type = cInfo.unique; int courseId = cInfo.courseId; int nEntries = cInfo.nRunners; int FirstPos = cInfo.firstStart; int PosInterval = cInfo.interval; // Adjust first pos to make room for extra (before first start) if (cInfo.nExtra > 0) { int newFirstPos = FirstPos - cInfo.nExtra * PosInterval; while (newFirstPos < 0) newFirstPos += PosInterval; int extra = (FirstPos - newFirstPos) / PosInterval; nEntries += extra; FirstPos = newFirstPos; } for (int k = 0; k < nEntries; k++) { bool HasFree = false; for (int f = 0; f < nFields && !HasFree; f++) { if (StartField[f][FirstPos + k * PosInterval].first == 0) { StartField[f][FirstPos + k * PosInterval].first = Type; StartField[f][FirstPos + k * PosInterval].second = courseId; HasFree = true; } } if (!HasFree) return false; //No free start position. Fail. } return true; } } class DrawOptimAlgo { private: oEvent * oe; vector Classes; vector Runners; int maxNRunner = 0; int maxGroup = 0; int maxCourse = 0; int bestEndPos = 0; map otherClasses; int bestEndPosGlobal = 0; static int optimalLayout(int interval, vector< pair > &classes) { sort(classes.begin(), classes.end()); vector chaining(interval, 0); for (int k = int(classes.size()) - 1; k >= 0; k--) { int ix = 0; // Find free position for (int i = 1; i 0) nr += classes[k].second; chaining[ix] += 1 + interval * (nr - 1); } int last = chaining[0]; for (int i = 1; i &cInfo, int useNControls, int alteration) { //OutputDebugString((L"Use NC:" + itow(useNControls)).c_str()); if (di.firstStart <= 0) di.firstStart = 0; otherClasses.clear(); cInfo.clear(); map runnerPerGroup; map runnerPerCourse; int nRunnersTot = 0; for (auto c_it : Classes) { bool drawClass = di.classes.count(c_it->getId()) > 0; ClassInfo *cPtr = 0; if (!drawClass) { otherClasses[c_it->getId()] = ClassInfo(&*c_it); cPtr = &otherClasses[c_it->getId()]; } else cPtr = &di.classes[c_it->getId()]; ClassInfo &ci = *cPtr; pCourse pc = c_it->getCourse(); if (pc && useNControls < 1000) { if (useNControls > 0 && pc->getNumControls() > 0) ci.unique = 1000000 + pc->getIdSum(useNControls); else ci.unique = 10000 + pc->getId(); ci.courseId = pc->getId(); } else ci.unique = ci.classId; if (!drawClass) continue; int nr = c_it->getNumRunners(true, true, true); if (ci.nVacant == -1 || !ci.nVacantSpecified || di.changedVacancyInfo) { // Auto initialize int nVacancies = int(nr * di.vacancyFactor + 0.5); nVacancies = max(nVacancies, di.minVacancy); nVacancies = min(nVacancies, di.maxVacancy); nVacancies = max(nVacancies, 0); if (di.vacancyFactor == 0) nVacancies = 0; ci.nVacant = nVacancies; ci.nVacantSpecified = false; } if (!ci.nExtraSpecified || di.changedExtraInfo) { // Auto initialize ci.nExtra = max(int(nr * di.extraFactor + 0.5), 1); if (di.extraFactor == 0) ci.nExtra = 0; ci.nExtraSpecified = false; } ci.nRunners = nr + ci.nVacant; if (ci.nRunners > 0) { nRunnersTot += ci.nRunners + ci.nExtra; cInfo.push_back(ci); runnerPerGroup[ci.unique] += ci.nRunners + ci.nExtra; runnerPerCourse[ci.courseId] += ci.nRunners + ci.nExtra; } } maxGroup = 0; maxCourse = 0; maxNRunner = 0; int a = 1 + (alteration % 7); int b = (alteration % 3); int c = alteration % 5; for (size_t k = 0; k < cInfo.size(); k++) { maxNRunner = max(maxNRunner, cInfo[k].nRunners); cInfo[k].nRunnersGroup = runnerPerGroup[cInfo[k].unique]; cInfo[k].nRunnersCourse = runnerPerCourse[cInfo[k].courseId]; maxGroup = max(maxGroup, cInfo[k].nRunnersGroup); maxCourse = max(maxCourse, cInfo[k].nRunnersCourse); cInfo[k].sortFactor = cInfo[k].nRunners * a + cInfo[k].nRunnersGroup * b + cInfo[k].nRunnersCourse * c; } /*for (size_t k = 0; k < cInfo.size(); k++) { auto pc = oe->getClass(cInfo[k].classId); auto c = pc->getCourse(); wstring cc; for (int i = 0; i < 3; i++) cc += itow(c->getControl(i)->getId()) + L","; wstring w = pc->getName() + L"; " + cc + L"; " + itow(cInfo[k].unique) + L"; " + itow(cInfo[k].nRunners) + L"\n"; OutputDebugString(w.c_str()); }*/ di.numDistinctInit = runnerPerGroup.size(); di.numRunnerSameInitMax = maxGroup; di.numRunnerSameCourseMax = maxCourse; // Calculate the theoretical best end position to use. bestEndPos = 0; for (map::iterator it = runnerPerGroup.begin(); it != runnerPerGroup.end(); ++it) { vector< pair > classes; for (size_t k = 0; k < cInfo.size(); k++) { if (cInfo[k].unique == it->first) classes.push_back(make_pair(cInfo[k].nRunners, cInfo[k].nExtra)); } int optTime = optimalLayout(di.minClassInterval / di.baseInterval, classes); bestEndPos = max(optTime, bestEndPos); } if (nRunnersTot > 0) bestEndPos = max(bestEndPos, nRunnersTot / di.nFields); if (!di.allowNeighbourSameCourse) bestEndPos = max(bestEndPos, maxCourse * 2 - 1); else bestEndPos = max(bestEndPos, maxCourse); } public: DrawOptimAlgo(oEvent *oe) : oe(oe) { oe->getClasses(Classes, false); oe->getRunners(-1, -1, Runners); } void optimizeStartOrder(vector< vector > > &StartField, DrawInfo &di, vector &cInfo, int useNControls, int alteration) { if (bestEndPosGlobal == 0) { bestEndPosGlobal = 100000; for (int i = 1; i <= di.maxCommonControl && i<=10; i++) { int ncc = i; if (i >= 10) ncc = 0; computeBestStartDepth(di, cInfo, ncc, 0); bestEndPosGlobal = min(bestEndPos, bestEndPosGlobal); } di.minimalStartDepth = bestEndPosGlobal * di.baseInterval; } computeBestStartDepth(di, cInfo, useNControls, alteration); ClassInfo::sSortOrder = 0; sort(cInfo.begin(), cInfo.end()); int maxSize = di.minClassInterval * maxNRunner; // Special case for constant time start if (di.baseInterval == 0) { di.baseInterval = 1; di.minClassInterval = 0; } // Calculate an estimated maximal class intervall for (size_t k = 0; k < cInfo.size(); k++) { int quotient = maxSize / (cInfo[k].nRunners*di.baseInterval); if (quotient*di.baseInterval > di.maxClassInterval) quotient = di.maxClassInterval / di.baseInterval; if (cInfo[k].nRunnersGroup >= maxGroup) quotient = di.minClassInterval / di.baseInterval; if (!cInfo[k].hasFixedTime) cInfo[k].interval = quotient; } for (int m = 0; m < di.nFields; m++) StartField[m].resize(3000); int alternator = 0; // Fill up with non-drawn classes for (auto &it : Runners) { int st = it->getStartTime(); int relSt = st - di.firstStart; int relPos = relSt / di.baseInterval; if (st > 0 && relSt >= 0 && relPos < 3000 && (relSt%di.baseInterval) == 0) { if (otherClasses.count(it->getClassId(false)) == 0) continue; pClass cls = it->getClassRef(true); if (cls) { if (!di.startName.empty() && cls->getStart() != di.startName) continue; if (cls->hasFreeStart()) continue; } ClassInfo &ci = otherClasses[it->getClassId(false)]; int k = 0; while (true) { if (k == StartField.size()) { StartField.push_back(vector< pair >()); StartField.back().resize(3000); } if (StartField[k][relPos].first == 0) { StartField[k][relPos].first = ci.unique; StartField[k][relPos].second = ci.courseId; break; } k++; } } } // Fill up classes with fixed starttime for (size_t k = 0; k < cInfo.size(); k++) { if (cInfo[k].hasFixedTime) { insertStart(StartField, di.nFields, cInfo[k]); } } if (di.minClassInterval == 0) { // Set fixed start time for (size_t k = 0; k < cInfo.size(); k++) { if (cInfo[k].hasFixedTime) continue; cInfo[k].firstStart = di.firstStart; cInfo[k].interval = 0; } } else { // Do the distribution for (size_t k = 0; k < cInfo.size(); k++) { if (cInfo[k].hasFixedTime) continue; int minPos = 1000000; int minEndPos = 1000000; int minInterval = cInfo[k].interval; for (int i = di.minClassInterval / di.baseInterval; i <= cInfo[k].interval; i++) { int startpos = alternator % max(1, (bestEndPos - cInfo[k].nRunners * i) / 3); startpos = 0; int ipos = startpos; int t = 0; while (!isFree(di, StartField, di.nFields, ipos, i, cInfo[k])) { t++; // Algorithm to randomize start position // First startpos -> bestEndTime, then 0 -> startpos, then remaining if (t < (bestEndPos - startpos)) ipos = startpos + t; else { ipos = t - (bestEndPos - startpos); if (ipos >= startpos) ipos = t; } } int endPos = ipos + i * cInfo[k].nRunners; if (endPos < minEndPos || endPos < bestEndPos) { minEndPos = endPos; minPos = ipos; minInterval = i; } } cInfo[k].firstStart = minPos; cInfo[k].interval = minInterval; cInfo[k].overShoot = max(minEndPos - bestEndPosGlobal, 0); insertStart(StartField, di.nFields, cInfo[k]); alternator += alteration; } } } }; void oEvent::optimizeStartOrder(gdioutput &gdi, DrawInfo &di, vector &cInfo) { if (Classes.size()==0) return; struct StartParam { int nControls; int alternator; double badness; int last; StartParam() : nControls(1), alternator(1), badness(1000), last(90000000) {} }; StartParam opt; bool found = false; int nCtrl = 1;//max(1, di.maxCommonControl-2); const int maxControlDiff = di.maxCommonControl < 1000 ? di.maxCommonControl : 10; bool checkOnlyClass = di.maxCommonControl == 1000; DrawOptimAlgo drawOptim(this); while (!found) { StartParam optInner; for (int alt = 0; alt <= 20 && !found; alt++) { vector< vector > > startField(di.nFields); drawOptim.optimizeStartOrder(startField, di, cInfo, nCtrl, alt); int overShoot = 0; int overSum = 0; int numOver = 0; for (size_t k=0;k0) { numOver++; overShoot = max (overShoot, ci.overShoot); overSum += ci.overShoot; } //laststart=max(laststart, ci.firstStart+ci.nRunners*ci.interval); } double avgShoot = double(overSum)/cInfo.size(); double badness = overShoot==0 ? 0 : overShoot / avgShoot; if (badnessmaxControlDiff) //We need some limit found = true; } vector< vector > > startField(di.nFields); drawOptim.optimizeStartOrder(startField, di, cInfo, opt.nControls, opt.alternator); gdi.addString("", 0, "Identifierar X unika inledningar på banorna.#" + itos(di.numDistinctInit)); gdi.addString("", 0, "Största gruppen med samma inledning har X platser.#" + itos(di.numRunnerSameInitMax)); gdi.addString("", 0, "Antal löpare på vanligaste banan X.#" + itos(di.numRunnerSameCourseMax)); gdi.addString("", 0, "Kortast teoretiska startdjup utan krockar är X minuter.#" + itos(di.minimalStartDepth/60)); gdi.dropLine(); //Find last starter int last = opt.last; int laststart=0; for (size_t k=0;kgetAbsTime(laststart*di.baseInterval+di.firstStart)); gdi.dropLine(); int nr; int T=0; int sum=0; gdi.addString("", 1, "Antal startande per intervall (inklusive redan lottade):"); string str=""; int empty=4; while (T <= last) { nr=0; for(size_t k=0;k &classes, DrawInfo &drawInfo, vector &cInfo) const { drawInfo.firstStart = 3600 * 22; drawInfo.minClassInterval = 3600; drawInfo.maxClassInterval = 1; drawInfo.minVacancy = 10; drawInfo.maxVacancy = 1; drawInfo.changedExtraInfo = false; drawInfo.changedVacancyInfo = false; set reducedStart; for (set::const_iterator it = classes.begin(); it != classes.end(); ++it) { pClass pc = oe->getClass(*it); if (pc) { int fs = pc->getDrawFirstStart(); int iv = pc->getDrawInterval(); if (iv > 0 && fs > 0) { drawInfo.firstStart = min(drawInfo.firstStart, fs); drawInfo.minClassInterval = min(drawInfo.minClassInterval, iv); drawInfo.maxClassInterval = max(drawInfo.maxClassInterval, iv); drawInfo.minVacancy = min(drawInfo.minVacancy, pc->getDrawVacant()); drawInfo.maxVacancy = max(drawInfo.maxVacancy, pc->getDrawVacant()); reducedStart.insert(fs%iv); } } } drawInfo.baseInterval = drawInfo.minClassInterval; int lastStart = -1; for (set::iterator it = reducedStart.begin(); it != reducedStart.end(); ++it) { if (lastStart == -1) lastStart = *it; else { drawInfo.baseInterval = min(drawInfo.baseInterval, *it-lastStart); lastStart = *it; } } map runnerPerGroup; map runnerPerCourse; cInfo.clear(); cInfo.resize(classes.size()); int i = 0; for (set::const_iterator it = classes.begin(); it != classes.end(); ++it) { pClass pc = oe->getClass(*it); if (pc) { int fs = pc->getDrawFirstStart(); int iv = pc->getDrawInterval(); if (iv <= 0) iv = drawInfo.minClassInterval; if (fs <= 0) fs = drawInfo.firstStart; //Fallback cInfo[i].pc = pc; cInfo[i].classId = *it; cInfo[i].courseId = pc->getCourseId(); cInfo[i].firstStart = fs; cInfo[i].unique = pc->getCourseId(); if (cInfo[i].unique == 0) cInfo[i].unique = pc->getId() * 10000; cInfo[i].firstStart = (fs - drawInfo.firstStart) / drawInfo.baseInterval; cInfo[i].interval = iv / drawInfo.baseInterval; cInfo[i].nVacant = pc->getDrawVacant(); cInfo[i].nExtra = pc->getDrawNumReserved(); auto spec = pc->getDrawSpecification(); cInfo[i].hasFixedTime = spec.count(oClass::DrawSpecified::FixedTime) != 0; cInfo[i].nExtraSpecified = spec.count(oClass::DrawSpecified::Extra) != 0; cInfo[i].nVacantSpecified = spec.count(oClass::DrawSpecified::Vacant) != 0; cInfo[i].nRunners = pc->getNumRunners(true, true, true) + cInfo[i].nVacant; if (cInfo[i].nRunners>0) { runnerPerGroup[cInfo[i].unique] += cInfo[i].nRunners; runnerPerCourse[cInfo[i].courseId] += cInfo[i].nRunners; } drawInfo.classes[*it] = cInfo[i]; i++; } } for (size_t k = 0; k spec; spec.push_back(ClassDrawSpecification(it->getId(), 0, 0, 0, 0)); drawList(spec, method, 1, drawType); } } void oEvent::drawList(const vector &spec, DrawMethod method, int pairSize, DrawType drawType) { autoSynchronizeLists(false); assert(pairSize > 0); oRunnerList::iterator it; int VacantClubId=getVacantClub(false); map clsId2Ix; set clsIdClearVac; const bool multiDay = hasPrevStage(); for (size_t k = 0; k < spec.size(); k++) { pClass pc = getClass(spec[k].classID); if (!pc) throw std::exception("Klass saknas"); if (spec[k].vacances>0 && pc->getClassType()==oClassRelay) throw std::exception("Vakanser stöds ej i stafett."); if (spec[k].vacances>0 && (spec[k].leg>0 || pc->getParentClass())) throw std::exception("Det går endast att sätta in vakanser på sträcka 1."); if (size_t(spec[k].leg) < pc->legInfo.size()) { pc->setStartType(spec[k].leg, STDrawn, true); //Automatically change start method } else if (spec[k].leg == -1) { for (size_t j = 0; j < pc->legInfo.size(); j++) pc->setStartType(j, STDrawn, true); //Automatically change start method } pc->synchronize(true); clsId2Ix[spec[k].classID] = k; if (!multiDay && spec[k].leg == 0 && pc->getParentClass() == 0) clsIdClearVac.insert(spec[k].classID); } vector runners; runners.reserve(Runners.size()); if (drawType == DrawType::DrawAll) { if (!clsIdClearVac.empty()) { //Only remove vacances on leg 0. vector toRemove; //Remove old vacances for (it=Runners.begin(); it != Runners.end(); ++it) { if (clsIdClearVac.count(it->getClassId(true))) { if (it->isRemoved()) continue; if (it->tInTeam) continue; // Cannot remove team runners if (it->getClubId()==VacantClubId) { toRemove.push_back(it->getId()); } } } removeRunner(toRemove); toRemove.clear(); //loop over specs, check clsIdClearVac... for (size_t k = 0; k < spec.size(); k++) { if (!clsIdClearVac.count(spec[k].classID)) continue; for (int i = 0; i < spec[k].vacances; i++) { oe->addRunnerVacant(spec[k].classID); } } } for (it=Runners.begin(); it != Runners.end(); ++it) { int cid = it->getClassId(true); if (!it->isRemoved() && clsId2Ix.count(cid)) { if (it->getStatus() == StatusNotCompetiting) continue; int ix = clsId2Ix[cid]; if (it->legToRun() == spec[ix].leg || spec[ix].leg == -1) { runners.push_back(&*it); spec[ix].ntimes++; } } } } else { // Find first/last start in class and interval: vector first(spec.size(), 7*24*3600); vector last(spec.size(), 0); set cinterval; int baseInterval = 10*60; for (it=Runners.begin(); it != Runners.end(); ++it) { if (!it->isRemoved() && clsId2Ix.count(it->getClassId(true))) { if (it->getStatus() == StatusNotCompetiting) continue; int st = it->getStartTime(); int ix = clsId2Ix[it->getClassId(false)]; if (st>0) { first[ix] = min(first[ix], st); last[ix] = max(last[ix], st); cinterval.insert(st); } else { spec[ix].ntimes++; runners.push_back(&*it); } } } // Find start interval int t=0; for (set::iterator sit = cinterval.begin(); sit!=cinterval.end();++sit) { if ( (*sit-t) > 0) baseInterval = min(baseInterval, (*sit-t)); t = *sit; } for (size_t k = 0; k < spec.size(); k++) { if (drawType == DrawType::RemainingBefore) spec[k].firstStart = first[k] - runners.size()*baseInterval; else spec[k].firstStart = last[k] + baseInterval; spec[k].interval = baseInterval; if (last[k] == 0 || spec[k].firstStart<=0 || baseInterval == 10*60) { // Fallback if incorrect specification. spec[k].firstStart = 3600; spec[k].interval = 2*60; } } } if (runners.empty()) return; vector stimes(runners.size()); int nr = 0; for (size_t k = 0; k < spec.size(); k++) { for (int i = 0; i < spec[k].ntimes; i++) { int kx = i/pairSize; stimes[nr++] = spec[k].firstStart + spec[k].interval * kx; } } if (spec.size() > 1) sort(stimes.begin(), stimes.end()); if (gdibase.isTest()) InitRanom(0,0); switch (method) { case DrawMethod::SOFT: drawSOFTMethod(runners, true); break; case DrawMethod::MeOS: drawMeOSMethod(runners); break; case DrawMethod::Random: permute(stimes); break; default: throw 0; } int minStartNo = Runners.size(); vector> newStartNo; for(unsigned k=0;ksetStartTime(stimes[k], true, ChangeType::Update, false); runners[k]->synchronize(); minStartNo = min(minStartNo, runners[k]->getStartNo()); newStartNo.emplace_back(stimes[k], k); } sort(newStartNo.begin(), newStartNo.end()); //CurrentSortOrder = SortByStartTime; //sort(runners.begin(), runners.end()); if (minStartNo == 0) minStartNo = nextFreeStartNo + 1; for(size_t k=0; kgetClassRef(true); if (pCls && pCls->lockedForking() || runners[k]->getLegNumber() > 0) continue; runners[k]->updateStartNo(newStartNo[k].second + minStartNo); } nextFreeStartNo = max(nextFreeStartNo, minStartNo + stimes.size()); } void oEvent::drawListClumped(int ClassID, int FirstStart, int Interval, int Vacances) { pClass pc=getClass(ClassID); if (!pc) throw std::exception("Klass saknas"); if (Vacances>0 && pc->getClassType()!=oClassIndividual) throw std::exception("Lottningsmetoden stöds ej i den här klassen."); oRunnerList::iterator it; int nRunners=0; autoSynchronizeLists(false); while (Vacances>0) { addRunnerVacant(ClassID); Vacances--; } for (it=Runners.begin(); it != Runners.end(); ++it) if (it->Class && it->Class->Id==ClassID) nRunners++; if (nRunners==0) return; int *stimes=new int[nRunners]; //Number of start groups //int ngroups=(nRunners/5) int ginterval; if (nRunners>=Interval) ginterval=10; else if (Interval/nRunners>60){ ginterval=40; } else if (Interval/nRunners>30){ ginterval=20; } else if (Interval/nRunners>20){ ginterval=15; } else if (Interval/nRunners>10){ ginterval=1; } else ginterval=10; int nGroups=Interval/ginterval+1; //15 s. per interval. int k; if (nGroups>0){ int MaxRunnersGroup=max((2*nRunners)/nGroups, 4)+GetRandomNumber(2); int *sgroups=new int[nGroups]; for(k=0;k5){ //Remove second group... sgroups[1]=sgroups[nGroups-1]; nGroups--; } if (nGroups>9 && ginterval<60 && (GetRandomBit() || GetRandomBit() || GetRandomBit())){ //Remove third group... sgroups[2]=sgroups[nGroups-1]; nGroups--; if (nGroups>13 && ginterval<30 && (GetRandomBit() || GetRandomBit() || GetRandomBit())){ //Remove third group... sgroups[3]=sgroups[nGroups-1]; nGroups--; int ng=4; //Max two minutes pause while(nGroups>10 && (nRunners/nGroups)5){ permute(sgroups+2, nGroups-2); //Remove some random groups (except first and last). for(k=2;k5){ sgroups[k]=sgroups[nGroups-1]; nGroups--; } } } //Premute all groups; permute(sgroups, nGroups); int *counters=new int[nGroups]; memset(counters, 0, sizeof(int)*nGroups); stimes[0]=FirstStart; stimes[1]=FirstStart+Interval; for(k=2;kMaxRunnersGroup){ g=(g+3)%nGroups; } if (sgroups[g]==FirstStart){ //Avoid first start if (GetRandomBit() || GetRandomBit()) g=(g+1)%nGroups; } if (counters[g]>MaxRunnersGroup){ g=(g+2)%nGroups; } if (counters[g]>MaxRunnersGroup){ g=(g+2)%nGroups; } stimes[k]=sgroups[g]; counters[g]++; } delete[] sgroups; delete[] counters; } else{ for(k=0;kClass && it->Class->Id == ClassID) { it->setStartTime(stimes[k++], true, oBase::ChangeType::Update, false); it->StartNo = k; it->synchronize(); } } reCalculateLeaderTimes(ClassID); delete[] stimes; } void oEvent::automaticDrawAll(gdioutput &gdi, const wstring &firstStart, const wstring &minIntervall, const wstring &vacances, bool lateBefore, bool allowNeighbourSameCourse, DrawMethod method, int pairSize) { gdi.refresh(); const int leg = 0; const double extraFactor = 0.0; int drawn = 0; int baseInterval = convertAbsoluteTimeMS(minIntervall)/2; if (baseInterval == 0) { gdi.fillDown(); int iFirstStart = getRelativeTime(firstStart); if (iFirstStart>0) gdi.addString("", 1, "Gemensam start"); else { gdi.addString("", 1, "Nollställer starttider"); iFirstStart = 0; } gdi.refreshFast(); gdi.dropLine(); for (oClassList::iterator it = Classes.begin(); it!=Classes.end(); ++it) { if (it->isRemoved()) continue; vector spec; spec.push_back(ClassDrawSpecification(it->getId(), 0, iFirstStart, 0, 0)); oe->drawList(spec, DrawMethod::Random, 1, DrawType::DrawAll); } return; } if (baseInterval<1 || baseInterval>60*60) throw std::exception("Felaktigt tidsformat för intervall"); int iFirstStart = getRelativeTime(firstStart); if (iFirstStart<=0) throw std::exception("Felaktigt tidsformat för första start"); double vacancy = _wtof(vacances.c_str())/100; gdi.fillDown(); gdi.addString("", 1, "Automatisk lottning").setColor(colorGreen); gdi.addString("", 0, "Inspekterar klasser..."); gdi.refreshFast(); set notDrawn; getNotDrawnClasses(notDrawn, false); set needsCompletion; getNotDrawnClasses(needsCompletion, true); for(set::iterator it = notDrawn.begin(); it!=notDrawn.end(); ++it) needsCompletion.erase(*it); //Start with not drawn classes map starts; map runnersPerClass; // Count number of runners per start for (oRunnerList::iterator it = Runners.begin(); it!=Runners.end(); ++it) { if (it->skip()) continue; if (it->tLeg != leg) continue; if (it->isVacant() && notDrawn.count(it->getClassId(false))==1) continue; pClass pc = it->Class; if (pc && pc->hasFreeStart()) continue; if (pc) ++starts[pc->getStart()]; ++runnersPerClass[pc]; } while ( !starts.empty() ) { // Select smallest start int runnersStart = Runners.size()+1; wstring start; for ( map::iterator it = starts.begin(); it != starts.end(); ++it) { if (runnersStart > it->second) { start = it->first; runnersStart = it->second; } } starts.erase(start); // Estimate parameters for start DrawInfo di; int maxRunners = 0; // Find largest class in start; for (oClassList::iterator it = Classes.begin(); it!=Classes.end(); ++it) { if (it->getStart() != start) continue; if (it->hasFreeStart()) continue; maxRunners = max(maxRunners, runnersPerClass[&*it]); } if (maxRunners==0) continue; int maxParallell = 15; if (runnersStart < 100) maxParallell = 4; else if (runnersStart < 300) maxParallell = 6; else if (runnersStart < 700) maxParallell = 10; else if (runnersStart < 1000) maxParallell = 12; else maxParallell = 15; int optimalParallel = runnersStart / (maxRunners*2); // Min is every second interval di.nFields = max(3, min (optimalParallel + 2, 15)); di.baseInterval = baseInterval; di.extraFactor = extraFactor; di.firstStart = iFirstStart; di.minClassInterval = baseInterval * 2; di.maxClassInterval = di.minClassInterval; di.minVacancy = 1; di.maxVacancy = 100; di.vacancyFactor = vacancy; di.allowNeighbourSameCourse = allowNeighbourSameCourse; di.startName = start; for (oClassList::iterator it = Classes.begin(); it!=Classes.end(); ++it) { if (it->getStart() != start) continue; if (notDrawn.count(it->getId())==0) continue; // Only not drawn classes if (it->hasFreeStart()) continue; di.classes[it->getId()] = ClassInfo(&*it); } if (di.classes.size()==0) continue; gdi.dropLine(); gdi.addStringUT(1, lang.tl(L"Optimerar startfördelning ") + start); gdi.refreshFast(); gdi.dropLine(); vector cInfo; optimizeStartOrder(gdi, di, cInfo); int laststart=0; for (size_t k=0;kgetClassType() == oClassRelay) { gdi.addString("", 0, L"Hoppar över stafettklass: X#" + getClass(ci.classId)->getName()).setColor(colorRed); continue; } gdi.addString("", 0, L"Lottar: X#" + getClass(ci.classId)->getName()); vector spec; spec.push_back(ClassDrawSpecification(ci.classId, leg, di.firstStart + di.baseInterval * ci.firstStart, di.baseInterval * ci.interval, ci.nVacant)); drawList(spec, method, pairSize, DrawType::DrawAll); gdi.scrollToBottom(); gdi.refreshFast(); drawn++; } } // Classes that need completion for (oClassList::iterator it = Classes.begin(); it!=Classes.end(); ++it) { if (needsCompletion.count(it->getId())==0) continue; if (it->hasFreeStart()) continue; gdi.addStringUT(0, lang.tl(L"Lottar efteranmälda: ") + it->getName()); vector spec; spec.push_back(ClassDrawSpecification(it->getId(), leg, 0, 0, 0)); drawList(spec, method, 1, lateBefore ? DrawType::RemainingBefore : DrawType::RemainingAfter); gdi.scrollToBottom(); gdi.refreshFast(); drawn++; } gdi.dropLine(); if (drawn==0) gdi.addString("", 1, "Klart: inga klasser behövde lottas.").setColor(colorGreen); else gdi.addString("", 1, "Klart: alla klasser lottade.").setColor(colorGreen); // Relay classes? gdi.dropLine(); gdi.refreshFast(); } void oEvent::drawPersuitList(int classId, int firstTime, int restartTime, int maxTime, int interval, int pairSize, bool reverse, double scale) { if (classId<=0) return; pClass pc=getClass(classId); if (!pc) throw std::exception("Klass saknas"); const int leg = 0; if (size_t(leg) < pc->legInfo.size()) { pc->legInfo[leg].startMethod = STDrawn; //Automatically change start method } vector trunner; getRunners(classId, 0, trunner); vector runner; runner.reserve(trunner.size()); for (size_t k = 0; k< trunner.size(); k++) // Only treat specified leg if (trunner[k]->tLeg == leg) runner.push_back(trunner[k]); if (runner.empty()) return; // Make sure patrol members use the same time vector adjustedTimes(runner.size()); for (size_t k = 0; kinputStatus == StatusOK && runner[k]->inputTime>0) { int it = runner[k]->inputTime; if (runner[k]->tInTeam) { for (size_t j = 0; j < runner[k]->tInTeam->Runners.size(); j++) { int it2 = runner[k]->tInTeam->Runners[j]->inputTime; if (it2 > 0) it = max(it, it2); } } adjustedTimes[k] = it; } } vector< pair > times(runner.size()); for (size_t k = 0; kinputStatus == StatusOK && adjustedTimes[k]>0) { if (scale != 1.0) times[k].first = int(floor(double(adjustedTimes[k]) * scale + 0.5)); else times[k].first = adjustedTimes[k]; } else { times[k].first = 3600 * 24 * 7 + runner[k]->inputStatus; if (runner[k]->isVacant()) times[k].first += 10; // Vacansies last } } // Sorted by name in input stable_sort(times.begin(), times.end()); int delta = times[0].first; if (delta >= 3600*24*7) delta = 0; int reverseDelta = 0; if (reverse) { for (size_t k = 0; ksetStartTime(firstTime + times[k].first - delta, true, ChangeType::Update, false); else r->setStartTime(firstTime - times[k].first + reverseDelta, true, ChangeType::Update, false); } else if (!reverse) { if (breakIndex == -1) breakIndex = k; r->setStartTime(restartTime + ((k - breakIndex)/pairSize) * interval, true, ChangeType::Update, false); } else { if (breakIndex == -1) { breakIndex = times.size() - 1; odd = times.size() % 2; } r->setStartTime(restartTime + ((breakIndex - k + odd)/pairSize) * interval, true, ChangeType::Update, false); } r->synchronize(true); } reCalculateLeaderTimes(classId); }